The Control Architecture of the Amadeus Gripper

Some fundamental issues are presented related to the design and implementation aspects of advanced control techniques for robotic systems; extension and application to controlling the AMADEUS gripper, which is a special underwater device developed at the Heriot-Watt University of Edinburgh, are shown. Control objectives have been achieved through the application of the so-called Task-Function concept. This theory allows one to specify a complete task level closed loop hierarchical control architecture, and provides important guidelines for the implementation of actual task based control systems for robots.

[1]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[2]  Giorgio Cannata,et al.  Hybrid position/force control of constrained manipulators in presence of uncertainties , 1994 .

[3]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[4]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[5]  L. Li,et al.  An adaptive scheme for robot joint trajectory generation , 1990, J. Field Robotics.

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  P. Tomei A simple PD controller for robots with elastic joints , 1991 .

[8]  Bernard Espiau,et al.  Computer-aided design of a generic robot controller handling reactivity and real-time control issues , 1993, IEEE Trans. Control. Syst. Technol..

[9]  Z. Qu,et al.  Robust tracking control of robots by a linear feedback law , 1991 .

[10]  J. Wen,et al.  The attitude control problem , 1991 .

[11]  Bruno Siciliano,et al.  A solution algorithm to the inverse kinematic problem for redundant manipulators , 1988, IEEE J. Robotics Autom..

[12]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[13]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[14]  Mark W. Spong,et al.  Hybrid impedance control of robotic manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[15]  Thea Iberall,et al.  Dextrous robot hands , 1990 .

[16]  R. Ortega,et al.  A semiglobally stable output feedback PI2D regulator for robot manipulators , 1995, IEEE Trans. Autom. Control..

[17]  Giuseppe Casalino,et al.  Stability and robustness analysis of a two layered hierarchical architecture for the closed loop control of robots in the operational space , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[18]  Giuseppe Casalino,et al.  The local force control loop approach in bilateral control of master-slave systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Mark W. Spong,et al.  Hybrid impedance control of robotic manipulators , 1988, IEEE J. Robotics Autom..

[20]  Matthew T. Mason,et al.  Robot Hands and the Mechanics of Manipulation , 1985 .

[21]  Enrico Grosso,et al.  Active eye-head control , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.