Metalearning and neuromodulation

[1]  Tommi S. Jaakkola,et al.  Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms , 2000, Machine Learning.

[2]  V. Russell,et al.  Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat , 1992, Neurochemical Research.

[3]  Sridhar Mahadevan,et al.  Average reward reinforcement learning: Foundations, algorithms, and empirical results , 2004, Machine Learning.

[4]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[5]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[6]  Peter Dayan,et al.  Dopamine: generalization and bonuses , 2002, Neural Networks.

[7]  Eddy J. Davelaar,et al.  Neuromodulation of decision and response selection , 2002, Neural Networks.

[8]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[9]  Motoaki Kawanabe,et al.  On-line learning in changing environments with applications in supervised and unsupervised learning , 2002, Neural Networks.

[10]  Daniel Durstewitz,et al.  The computational role of dopamine D1 receptors in working memory , 2002, Neural Networks.

[11]  Roland E. Suri,et al.  TD models of reward predictive responses in dopamine neurons , 2002, Neural Networks.

[12]  Peter Dayan,et al.  Acetylcholine in cortical inference , 2002, Neural Networks.

[13]  Junichiro Yoshimoto,et al.  Control of exploitation-exploration meta-parameter in reinforcement learning , 2002, Neural Networks.

[14]  Jonathan D. Cohen,et al.  Simplified dynamics in a model of noradrenergic modulation of cognitive performance , 2002, Neural Networks.

[15]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[16]  P. Goldman-Rakic,et al.  The Physiological Role of 5-HT2A Receptors in Working Memory , 2002, The Journal of Neuroscience.

[17]  J. Partridge,et al.  Nicotinic Acetylcholine Receptors Interact with Dopamine in Induction of Striatal Long-Term Depression , 2002, The Journal of Neuroscience.

[18]  O. Hikosaka,et al.  Role of Tonically Active Neurons in Primate Caudate in Reward-Oriented Saccadic Eye Movement , 2001, The Journal of Neuroscience.

[19]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[20]  Kenji Doya,et al.  Neural mechanisms of learning and control , 2001 .

[21]  Sham M. Kakade,et al.  Optimizing Average Reward Using Discounted Rewards , 2001, COLT/EuroCOLT.

[22]  T. Robbins,et al.  Decision making and neuropsychiatry , 2001, Trends in Cognitive Sciences.

[23]  T. Robbins,et al.  Impulsive Choice Induced in Rats by Lesions of the Nucleus Accumbens Core , 2001, Science.

[24]  M. Wong,et al.  Research and treatment approaches to depression , 2001, Nature Reviews Neuroscience.

[25]  D. Murphy,et al.  Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Peter Dayan,et al.  ACh, Uncertainty, and Cortical Inference , 2001, NIPS.

[27]  Jun Morimoto,et al.  Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning , 2000, Robotics Auton. Syst..

[28]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[29]  D. Rasmusson The role of acetylcholine in cortical synaptic plasticity , 2000, Behavioural Brain Research.

[30]  S. Mobini,et al.  Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement , 2000, Psychopharmacology.

[31]  A. Lajtha,et al.  Serotonin-mediated striatal dopamine release involves the dopamine uptake site and the serotonin receptor , 2000, Brain Research Bulletin.

[32]  Peter L. Bartlett,et al.  Reinforcement Learning in POMDP's via Direct Gradient Ascent , 2000, ICML.

[33]  T. Robbins,et al.  Chemical neuromodulation of frontal-executive functions in humans and other animals , 2000, Experimental Brain Research.

[34]  W. Schultz,et al.  Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. , 2000, Journal of neurophysiology.

[35]  P. Strick,et al.  Basal ganglia and cerebellar loops: motor and cognitive circuits , 2000, Brain Research Reviews.

[36]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[37]  K. Doya Metalearning, neuromodulation, and emotion , 2000 .

[38]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[39]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[40]  Peter Dayan,et al.  Dopamine Bonuses , 2000, NIPS.

[41]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[42]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[43]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[44]  P. Katz Beyond neurotransmission : neuromodulation and its importance for information processing , 1999 .

[45]  E. Perry,et al.  Acetylcholine in mind: a neurotransmitter correlate of consciousness? , 1999, Trends in Neurosciences.

[46]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[47]  J. Tepper,et al.  Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo , 1999, Neuroscience.

[48]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[49]  L. Parsons,et al.  Serotonin1B Receptor Stimulation Enhances Cocaine Reinforcement , 1998, The Journal of Neuroscience.

[50]  P. De Deurwaerdère,et al.  Opposite Change of In Vivo Dopamine Release in the Rat Nucleus Accumbens and Striatum That Follows Electrical Stimulation of Dorsal Raphe Nucleus: Role of 5-HT3 Receptors , 1998, The Journal of Neuroscience.

[51]  R. Gainetdinov,et al.  Cocaine self-administration in dopamine-transporter knockout mice , 1998, Nature Neuroscience.

[52]  R. Gainetdinov,et al.  Cocaine self-administration in dopamine-transporter knockout mice , 1998, Nature Neuroscience.

[53]  R. Hen,et al.  Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor , 1998, Nature.

[54]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[55]  G. Koob,et al.  The Neurobiology of Addiction , 1997, Alcohol health and research world.

[56]  M. Buhot Serotonin receptors in cognitive behaviors , 1997, Current Opinion in Neurobiology.

[57]  T. Robbins Arousal systems and attentional processes , 1997, Biological Psychology.

[58]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[59]  Dimitri P. Bertsekas,et al.  Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems , 1996, NIPS.

[60]  Masataka Watanabe Reward expectancy in primate prefrental neurons , 1996, Nature.

[61]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[62]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[64]  Toby Walsh,et al.  Proceedings of AAAI-96 , 1996 .

[65]  Leslie Pack Kaelbling,et al.  Learning Policies for Partially Observable Environments: Scaling Up , 1997, ICML.

[66]  JM Tepper,et al.  GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  P. Fletcher Effects of combined or separate 5,7-dihydroxytryptamine lesions of the dorsal and median raphe nuclei on responding maintained by a DRL 20s schedule of food reinforcement , 1995, Brain Research.

[68]  A. Barto,et al.  Adaptive Critics and the Basal Ganglia , 1994 .

[69]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[70]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[71]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[72]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[73]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  M. Hasselmo,et al.  Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Gerald Tesauro,et al.  TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play , 1994, Neural Computation.

[77]  P. Goldman-Rakic,et al.  The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. , 1994, Journal of neurophysiology.

[78]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[79]  M. Hasselmo,et al.  Acetylcholine and memory , 1993, Trends in Neurosciences.

[80]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Richard S. Sutton,et al.  Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta , 1992, AAAI.

[82]  J. Deakin,et al.  5-HT and mechanisms of defence , 1991, Journal of psychopharmacology.

[83]  Michael I. Jordan,et al.  A more biologically plausible learning rule for neural networks. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[84]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[85]  Vijaykumar Gullapalli,et al.  A stochastic reinforcement learning algorithm for learning real-valued functions , 1990, Neural Networks.

[86]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[87]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.