Probabilistic localization with a blind robot

Researchers have addressed the localization problem for mobile robots using many different kinds of sensors, including rangefinders, cameras, and odometers. In this paper, we consider localization using a robot that is virtually "blind", having only a clock and contact sensor at its disposal. This represents a drastic reduction in sensing requirements, even in light of existing work that considers localization with limited sensing. We present probabilistic techniques that represent and update the robot's position uncertainty and algorithms to reduce this uncertainty. We demonstrate the experimental effectiveness of these methods using a Roomba autonomous vacuum cleaner robot in laboratory environments.

[1]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[2]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[3]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[4]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[6]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[7]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[8]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[10]  M. Peasgood,et al.  Localization of multiple robots with simple sensors , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[11]  Mihalis Yannakakis,et al.  Shortest Paths Without a Map , 1989, Theor. Comput. Sci..

[12]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[13]  Howie Choset,et al.  Complete sensor-based coverage with extended-range detectors: a hierarchical decomposition in terms of critical points and Voronoi diagrams , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[14]  Kokichi Sugihara,et al.  Some location problems for robot navigation using a single camera , 1988, Computer Vision Graphics and Image Processing.

[15]  Weihong Zhang,et al.  Speeding Up the Convergence of Value Iteration in Partially Observable Markov Decision Processes , 2011, J. Artif. Intell. Res..

[16]  Wolfram Burgard,et al.  Coastal navigation-mobile robot navigation with uncertainty in dynamic environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[17]  Gregory Dudek,et al.  Localizing a robot with minimum travel , 1995, SODA '95.

[18]  Mark Moll,et al.  Manipulation of Pose Distributions , 2002, Int. J. Robotics Res..

[19]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[20]  Jason M. O'Kane,et al.  On Comparing the Power of Mobile Robots , 2006, Robotics: Science and Systems.

[21]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[22]  Howie Choset,et al.  Sensor Based Planing, Part II: Incremental COnstruction of the Generalized Voronoi Graph , 1995, ICRA.

[23]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[24]  Wesley H. Huang,et al.  SLAM with sparse sensing , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[25]  Wolfram Burgard,et al.  Active mobile robot localization by entropy minimization , 1997, Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots.

[26]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[27]  Kevin M. Lynch,et al.  Parts Feeding on a Conveyor with a One Joint Robot , 2000, Algorithmica.

[28]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[29]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[30]  Wolfram Burgard,et al.  A Monte Carlo Algorithm for Multi-Robot Localization , 1999 .

[31]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[32]  Jason M. O'Kane,et al.  Localization With Limited Sensing , 2007, IEEE Transactions on Robotics.

[33]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).