A Voronoi-diagram-based dynamic path-planning system for underactuated marine vessels☆

Abstract The main contribution of this paper is the development of a rapid, dynamic path-planning system for 3-DOF marine surface vessels navigating in environments where other marine vehicles might be operating too. The method is based on the Voronoi diagram and generates the initial path while ensuring that clearance constraints are satisfied with respect to both land and shallow waters. Fermat's Spiral (FS) segments are used to connect successive straight lines, hence, resulting in curvature-continuous paths that are rapidly computed. When a ship is detected, the range of its position during a given time frame is estimated, and the path-planning system produces in real time a new safe and smooth path. The International Regulations for Preventing Collisions at Sea (COLREG) are taken into account in the replanning procedure. An indirect adaptive Line-Of-Sight (LOS) guidance algorithm from the existing literature is implemented to ensure the underactuated vessel will counteract the effects of unknown environmental forces, such as ocean currents, while converging to the safe path. Simulations show the effectiveness of the proposed approach.

[1]  Lokukaluge P. Perera,et al.  Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance , 2015, IEEE Journal of Oceanic Engineering.

[2]  P. Fiorini,et al.  Motion planning in dynamic environments using the relative velocity paradigm , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[3]  Thor I. Fossen,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control: Fossen/Handbook of Marine Craft Hydrodynamics and Motion Control , 2011 .

[4]  Andreas Reason Dahl Path Planning and Guidance for Marine Surface Vessels , 2013 .

[5]  George W. Irwin,et al.  A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres , 2012, Annu. Rev. Control..

[6]  Klaus D. McDonald-Maier,et al.  Autonomous Ship Collision Avoidance Navigation Concepts, Technologies and Techniques , 2007, Journal of Navigation.

[7]  Jur P. van den Berg,et al.  Anytime path planning and replanning in dynamic environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  Jose Miguel Almeida,et al.  Radar based collision detection developments on USV ROAZ II , 2009, OCEANS 2009-EUROPE.

[9]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[10]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[11]  Stefano Chiaverini,et al.  Real-time path planning and obstacle avoidance for RAIS: an autonomous underwater vehicle , 2001 .

[12]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[13]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[14]  Gianluca Antonelli,et al.  A coordination strategy for multi-robot sampling of dynamic fields , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  Asgeir J. Sørensen,et al.  Towards integrated autonomous underwater operations for ocean mapping and monitoring , 2016, Annu. Rev. Control..

[16]  Scott A. Bortoff,et al.  Path planning for UAVs , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[17]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[18]  Thor I. Fossen,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control , 2011 .

[19]  António Manuel Santos Pascoal,et al.  A new approach to multi-robot harbour patrolling: Theory and experiments , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Jacoby Larson,et al.  Autonomous navigation and obstacle avoidance for unmanned surface vehicles , 2006, SPIE Defense + Commercial Sensing.

[21]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[22]  Asgeir J Sørensen,et al.  Relative velocity control and integral line of sight for path following of autonomous surface vessels: Merging intuition with theory , 2014 .

[23]  Michael T. Wolf,et al.  Safe Maritime Autonomous Navigation With COLREGS, Using Velocity Obstacles , 2014, IEEE Journal of Oceanic Engineering.

[24]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[25]  Andrea Caiti,et al.  Motion Planning for Marine Control Systems , 2015, Encyclopedia of Systems and Control.

[26]  Yaakov Bar-Shalom,et al.  Tracking with debiased consistent converted measurements versus EKF , 1993 .

[27]  Thor I. Fossen,et al.  Trajectory tracking and ocean current estimation for marine underactuated vehicles , 2014, 2014 IEEE Conference on Control Applications (CCA).

[28]  Thor I. Fossen,et al.  Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization , 2014, IEEE Transactions on Control Systems Technology.

[29]  Joongseon Joh,et al.  A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines , 2004 .

[30]  George W. Irwin,et al.  COLREGs-based collision avoidance strategies for unmanned surface vehicles , 2012 .

[31]  Michael Chau,et al.  3D Geographic Visualization: The Marine GIS , 2004, SDH.

[32]  Imen Karoui,et al.  Automatic Sea-Surface Obstacle Detection and Tracking in Forward-Looking Sonar Image Sequences , 2015 .

[33]  Anastasios M. Lekkas,et al.  Direct and indirect adaptive integral line‐of‐sight path‐following controllers for marine craft exposed to ocean currents , 2017 .

[34]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[35]  Gaurav S. Sukhatme,et al.  Obstacle detection and avoidance for an Autonomous Surface Vehicle using a profiling sonar , 2011, 2011 IEEE International Conference on Robotics and Automation.

[36]  Anastasios M. Lekkas,et al.  Online Path Planning for Surface Vehicles Exposed to Unknown Ocean Currents Using Pseudospectral Optimal Control , 2016 .

[37]  Thor I. Fossen,et al.  Continuous-Curvature Path Generation using Fermat's Spiral , 2013 .

[38]  M. Shanmugavel,et al.  Cooperative Path Planning of Unmanned Aerial Vehicles , 2010 .

[39]  Mae L. Seto Marine Robot Autonomy , 2012 .

[40]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[41]  Hugo Ledoux Computing the 3D Voronoi Diagram Robustly: An Easy Explanation , 2007, 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007).

[42]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[43]  J. Y. Yen An algorithm for finding shortest routes from all source nodes to a given destination in general networks , 1970 .

[44]  Christopher M. Gold,et al.  Maintaining the Spatial Relationships of Marine Vessels Using the Kinetic Voronoi Diagram , 2007, 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007).

[45]  T. Fossen,et al.  Continuous Curvature Path Planning using Voronoi diagrams and Fermat's spirals , 2013 .

[46]  António Manuel Santos Pascoal,et al.  A Decentralized Strategy for Multirobot Sampling/Patrolling: Theory and Experiments , 2015, IEEE Transactions on Control Systems Technology.

[47]  I. Quidu,et al.  Robust Multitarget Tracking in Forward-Looking Sonar Image Sequences Using Navigational Data , 2012, IEEE Journal of Oceanic Engineering.

[48]  Wright-Patterson Afb,et al.  UAV Cooperative Path Planning , 2000 .

[49]  Antonios Tsourdos,et al.  Cooperative Path Planning of Unmanned Aerial Vehicles: Tsourdos/Cooperative Path Planning of Unmanned Aerial Vehicles , 2010 .

[50]  Jonathan P. How,et al.  Cooperative path planning for multiple UAVs in dynamic and uncertain environments , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[51]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[52]  Anastasios M. Lekkas,et al.  A 3D dynamic Voronoi diagram-based path-planning system for UUVs , 2016, OCEANS 2016 MTS/IEEE Monterey.

[53]  M. Falcone,et al.  Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations , 2014 .

[54]  Karl Sammut,et al.  A survey on path planning for persistent autonomy of autonomous underwater vehicles , 2015 .

[55]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[56]  Kyle L. Woerner,et al.  Multi-contact protocol-constrained collision avoidance for autonomous marine vehicles , 2016 .

[57]  Christopher M. Gold,et al.  Tessellations in GIS: Part II–making changes , 2016, Geo spatial Inf. Sci..