Fuzzy reactive control for wheeled mobile robots

A mobile robot's ability to negotiate obstacles is important for successful point-to-point navigation. Hence, this paper presents a two stage fuzzy reactive control method. The first stage consists of a direction sensor that employs a fuzzy objective function to compute a direction (heading angle) for a robot to travel. At the second stage, a fuzzy dynamic window method utilizes a fuzzy objective function to determine the target wheel velocities of the robot. Simulations with two heterogeneous robots are performed in multiple environments. Initial results indicate that the fuzzy methods improve path length and are better at reducing speed around obstacles than linear methods.

[1]  Dale Anthony Carnegie,et al.  Development of a navigation system for heterogeneous mobile robots , 2011, Int. J. Intell. Syst. Technol. Appl..

[2]  Christian Schlegel Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile robot , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[3]  Lakhmissi Cherroun,et al.  Designing of Goal Seeking and Obstacle Avoidance Behaviors for a Mobile Robot Using Fuzzy Techniques , 2014 .

[4]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[5]  Iwan Ulrich,et al.  VFH/sup */: local obstacle avoidance with look-ahead verification , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[7]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[8]  Chengrong Li,et al.  A goal-oriented fuzzy reactive control method for mobile robot navigation in unknown environment , 2009, 2009 IEEE International Symposium on Industrial Electronics.

[9]  Roland Siegwart,et al.  Smooth and efficient obstacle avoidance for a tour guide robot , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[10]  Simon X. Yang,et al.  A goal-oriented fuzzy reactive control for mobile robots with automatic rule optimization , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[12]  Roland Siegwart,et al.  Real-time obstacle avoidance for polygonal robots with a reduced dynamic window , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Dale A. Carnegie,et al.  Applications of an adaptive hierarchical mobile robot navigation system , 2007 .

[14]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[15]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[17]  Charles F. Reinholtz,et al.  Virginia Tech's twin contenders: A comparative study of reactive and deliberative navigation , 2006, J. Field Robotics.

[18]  Reid G. Simmons,et al.  The lane-curvature method for local obstacle avoidance , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[19]  Jean-Jacques E. Slotine,et al.  Real-time path planning using harmonic potentials in dynamic environments , 1997, Proceedings of International Conference on Robotics and Automation.

[20]  I. Petrovic,et al.  An approach to motion planning of indoor mobile robots , 2003, IEEE International Conference on Industrial Technology, 2003.

[21]  Praneel Chand,et al.  Development of an Artificial Intelligence System for the Instruction and Control of Cooperating Mobile Robots , 2012 .

[22]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[23]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[24]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[25]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[26]  Jinwook Kim,et al.  A Fuzzy Obstacle Avoidance Controller Using a Lookup-Table Sharing Method and Its Applications for Mobile Robots , 2011 .

[27]  David Filliat,et al.  Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies , 2003, Cognitive Systems Research.