Relevant Region Exploration On General Cost-maps For Sampling-Based Motion Planning

Asymptotically optimal sampling-based planners require an intelligent exploration strategy to accelerate convergence. After an initial solution is found, a necessary condition for improvement is to generate new samples in the so-called "Informed Set". However, Informed Sampling can be ineffective in focusing search if the chosen heuristic fails to provide a good estimate of the solution cost. This work proposes an algorithm to sample the "Relevant Region" instead, which is a subset of the Informed Set. The Relevant Region utilizes cost-to-come information from the planner's tree structure, reduces dependence on the heuristic, and further focuses the search. Benchmarking tests in uniform and general cost-space settings demonstrate the efficacy of Relevant Region sampling.

[1]  Siddhartha S. Srinivasa,et al.  Informed Sampling for Asymptotically Optimal Path Planning , 2018, IEEE Transactions on Robotics.

[2]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[3]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[4]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Siddhartha S. Srinivasa,et al.  Addressing cost-space chasms in manipulation planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Didier Devaurs,et al.  Enhancing the transition-based RRT to deal with complex cost spaces , 2013, 2013 IEEE International Conference on Robotics and Automation.

[7]  Rachid Alami,et al.  Planning human-aware motions using a sampling-based costmap planner , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Oliver Brock,et al.  Single-Query Entropy-Guided Path Planning , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Nancy M. Amato,et al.  An obstacle-based rapidly-exploring random tree , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  Sachin Chitta,et al.  MoveIt! [ROS Topics] , 2012, IEEE Robotics Autom. Mag..

[11]  Juan Cortés,et al.  Randomized tree construction algorithm to explore energy landscapes , 2011, J. Comput. Chem..

[12]  Didier Devaurs,et al.  Optimal Path Planning in Complex Cost Spaces With Sampling-Based Algorithms , 2016, IEEE Transactions on Automation Science and Engineering.

[13]  Panagiotis Tsiotras,et al.  Machine learning guided exploration for sampling-based motion planning algorithms , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[14]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Baris Akgün,et al.  Sampling heuristics for optimal motion planning in high dimensions , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Lydia E. Kavraki,et al.  Benchmarking Motion Planning Algorithms: An Extensible Infrastructure for Analysis and Visualization , 2014, IEEE Robotics & Automation Magazine.

[17]  Panagiotis Tsiotras,et al.  Dynamic programming guided exploration for sampling-based motion planning algorithms , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[19]  Panagiotis Tsiotras,et al.  Deformable Rapidly-Exploring Random Trees , 2017, Robotics: Science and Systems.

[20]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[21]  Thierry Siméon,et al.  Sampling-Based Path Planning on Configuration-Space Costmaps , 2010, IEEE Transactions on Robotics.

[22]  Nancy M. Amato,et al.  MARRT: Medial Axis biased rapidly-exploring random trees , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[24]  Inna Sharf,et al.  Sampling-based A* algorithm for robot path-planning , 2014, Int. J. Robotics Res..

[25]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[26]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  James J. Kuffner,et al.  Randomized statistical path planning , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Lydia E. Kavraki,et al.  Guided Expansive Spaces Trees: a search strategy for motion- and cost-constrained state spaces , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.