Neural Fields in Visual Computing and Beyond

Recent advances in machine learning have led to increased interest in solving visual computing problems using methods that employ coordinate‐based neural networks. These methods, which we call neural fields, parameterize physical properties of scenes or objects across space and time. They have seen widespread success in problems such as 3D shape and image synthesis, animation of human bodies, 3D reconstruction, and pose estimation. Rapid progress has led to numerous papers, but a consolidation of the discovered knowledge has not yet emerged. We provide context, mathematical grounding, and a review of over 250 papers in the literature on neural fields. In Part I, we focus on neural field techniques by identifying common components of neural field methods, including different conditioning, representation, forward map, architecture, and manipulation methods. In Part II, we focus on applications of neural fields to different problems in visual computing, and beyond (e.g., robotics, audio). Our review shows the breadth of topics already covered in visual computing, both historically and in current incarnations, and highlights the improved quality, flexibility, and capability brought by neural field methods. Finally, we present a companion website that acts as a living database that can be continually updated by the community.

[1]  Marios Papas,et al.  NeRF‐Tex: Neural Reflectance Field Textures , 2022, EGSR.

[2]  N. Mitra,et al.  ShapeFormer: Transformer-based Shape Completion via Sparse Representation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  L. Guibas,et al.  ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Mohamed Elhoseiny,et al.  StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and Perks of StyleGAN2 , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  S. Lucey,et al.  A Learnable Radial Basis Positional Embedding for Coordinate-MLPs , 2021, AAAI.

[6]  Jeong Joon Park,et al.  StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Benjamin Recht,et al.  Plenoxels: Radiance Fields without Neural Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Sagie Benaim,et al.  Text2Mesh: Text-Driven Neural Stylization for Meshes , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  P. Abbeel,et al.  Zero-Shot Text-Guided Object Generation with Dream Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  J. Kopf,et al.  Learning Neural Light Fields with Ray-Space Embedding , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Jue Wang,et al.  Hallucinated Neural Radiance Fields in the Wild , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Jan Kautz,et al.  Learning Continuous Environment Fields via Implicit Functions , 2021, ICLR.

[13]  Sanja Fidler,et al.  Neural Fields as Learnable Kernels for 3D Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Andrea Tagliasacchi,et al.  NeSF: Neural Semantic Fields for Generalizable Semantic Segmentation of 3D Scenes , 2021, Trans. Mach. Learn. Res..

[15]  Andrea Tagliasacchi,et al.  VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field , 2021, ArXiv.

[16]  Vincent Sitzmann,et al.  Learning Signal-Agnostic Manifolds of Neural Fields , 2021, NeurIPS.

[17]  Hod Lipson,et al.  Full-Body Visual Self-Modeling of Robot Morphologies , 2021, ArXiv.

[18]  Bo Dai,et al.  Generative Occupancy Fields for 3D Surface-Aware Image Synthesis , 2021, NeurIPS.

[19]  Christian Theobalt,et al.  A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis , 2021, NeurIPS.

[20]  Jonathan T. Barron,et al.  Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition , 2021, NeurIPS.

[21]  Ken Goldberg,et al.  Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects , 2021, CoRL.

[22]  Jihoon Tack,et al.  Meta-Learning Sparse Implicit Neural Representations , 2021, NeurIPS.

[23]  Hongyi Xu,et al.  H-NeRF: Neural Radiance Fields for Rendering and Temporal Reconstruction of Humans in Motion , 2021, NeurIPS.

[24]  Bastian Goldlücke,et al.  AIR-Nets: An Attention-Based Framework for Locally Conditioned Implicit Representations , 2021, 2021 International Conference on 3D Vision (3DV).

[25]  Andrea Vedaldi,et al.  NeuralDiff: Segmenting 3D objects that move in egocentric videos , 2021, 2021 International Conference on 3D Vision (3DV).

[26]  Christian Theobalt,et al.  StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis , 2021, ICLR.

[27]  Jeannette Bohg,et al.  Vision-Only Robot Navigation in a Neural Radiance World , 2021, IEEE Robotics and Automation Letters.

[28]  Albert W. Reed,et al.  Unsupervised Non-Rigid Image Distortion Removal via Grid Deformation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  W. Heidrich,et al.  IntraTomo: Self-supervised Learning-based Tomography via Sinogram Synthesis and Prediction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Stefanie Zollmann,et al.  Neural Cameras: Learning Camera Characteristics for Coherent Mixed Reality Rendering , 2021, 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[31]  J. Tompkin,et al.  TöRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis , 2021, NeurIPS.

[32]  Carmine Clemente,et al.  Neural Knitworks: Patched Neural Implicit Representation Networks , 2021, ArXiv.

[33]  Ana I. L. Namburete,et al.  ImplicitVol: Sensorless 3D Ultrasound Reconstruction with Deep Implicit Representation , 2021, ArXiv.

[34]  Tali Dekel,et al.  Layered neural atlases for consistent video editing , 2021, ACM Trans. Graph..

[35]  Adrian Spurr,et al.  A Skeleton-Driven Neural Occupancy Representation for Articulated Hands , 2021, 2021 International Conference on 3D Vision (3DV).

[36]  G. Karniadakis,et al.  When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization? , 2021, SIAM J. Sci. Comput..

[37]  Li Fei-Fei,et al.  ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and Tactile Representations , 2021, CoRL.

[38]  Henry Fuchs,et al.  Neural Human Performer: Learning Generalizable Radiance Fields for Human Performance Rendering , 2021, NeurIPS.

[39]  Thomas Funkhouser,et al.  Multiresolution Deep Implicit Functions for 3D Shape Representation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Andreas Geiger,et al.  NEAT: Neural Attention Fields for End-to-End Autonomous Driving , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Francesc Moreno-Noguer,et al.  Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations , 2021, 2021 International Conference on 3D Vision (3DV).

[42]  Hujun Bao,et al.  Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Lourdes Agapito,et al.  CodeNeRF: Disentangled Neural Radiance Fields for Object Categories , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Jiwen Lu,et al.  NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Andreas Zell,et al.  Seeing Implicit Neural Representations as Fourier Series , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[46]  Patrick Labatut,et al.  Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[47]  T. Alkhalifah,et al.  A modified physics-informed neural network with positional encoding , 2021, First International Meeting for Applied Geoscience & Energy Expanded Abstracts.

[48]  Minsu Cho,et al.  Self-Calibrating Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[49]  J. Pauly,et al.  NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[50]  Hongyi Xu,et al.  imGHUM: Implicit Generative Models of 3D Human Shape and Articulated Pose , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Long Quan,et al.  Learning Signed Distance Field for Multi-view Surface Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[52]  Andrea Vedaldi,et al.  Augmenting Implicit Neural Shape Representations with Explicit Deformation Fields , 2021, ArXiv.

[53]  Tony Tung,et al.  Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[54]  Stefano Soatto,et al.  ARCH++: Animation-Ready Clothed Human Reconstruction Revisited , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[55]  Hongbin Zha,et al.  Continual Neural Mapping: Learning An Implicit Scene Representation from Sequential Observations , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Francesc Moreno-Noguer,et al.  SIDER: Single-Image Neural Optimization for Facial Geometric Detail Recovery , 2021, 2021 International Conference on 3D Vision (3DV).

[57]  Dimitris Samaras,et al.  FLAME-in-NeRF: Neural control of Radiance Fields for Free View Face Animation , 2021, 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG).

[58]  Jonathan Ventura,et al.  View Synthesis In Casually Captured Scenes Using a Cylindrical Neural Radiance Field With Exposure Compensation , 2021, SIGGRAPH Posters.

[59]  Marcus A. Brubaker,et al.  Neural Image Representations for Multi-Image Fusion and Layer Separation , 2021, ECCV.

[60]  Francesc Moreno-Noguer,et al.  H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[61]  Ravi Ramamoorthi,et al.  NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting , 2021, EGSR.

[62]  Nikolay Atanasov,et al.  A Deep Signed Directional Distance Function for Object Shape Representation , 2021, ArXiv.

[63]  J.-Y. Zhu,et al.  Advances in Neural Rendering , 2021, SIGGRAPH Courses.

[64]  Wenzel Jakob,et al.  A non-exponential transmittance model for volumetric scene representations , 2021, ACM Trans. Graph..

[65]  Jan Novák,et al.  Neural scene graph rendering , 2021, ACM Trans. Graph..

[66]  Wenzel Jakob,et al.  A non-exponential transmittance model for volumetric scene representations , 2021, ACM Trans. Graph..

[67]  Andrew Markham,et al.  Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations , 2021, Advances in Computational Mathematics.

[68]  L. Guibas,et al.  Unsupervised Discovery of Object Radiance Fields , 2021, ICLR.

[69]  Vincent Sitzmann,et al.  3D Neural Scene Representations for Visuomotor Control , 2021, CoRL.

[70]  D. Ramanan,et al.  Depth-supervised NeRF: Fewer Views and Faster Training for Free , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Simon Lucey,et al.  Rethinking Positional Encoding , 2021, ArXiv.

[72]  Jingyi Yu,et al.  IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via Implicit Neural Representation , 2021, MICCAI.

[73]  Gordon Wetzstein,et al.  Fast Training of Neural Lumigraph Representations using Meta Learning , 2021, NeurIPS.

[74]  Huchuan Lu,et al.  Animatable Neural Radiance Fields from Monocular RGB Video , 2021, ArXiv.

[75]  Jonathan T. Barron,et al.  HyperNeRF , 2021, ACM Trans. Graph..

[76]  Jaakko Lehtinen,et al.  Alias-Free Generative Adversarial Networks , 2021, NeurIPS.

[77]  Thomas Müller,et al.  Real-time neural radiance caching for path tracing , 2021, ACM Trans. Graph..

[78]  Yaron Lipman,et al.  Volume Rendering of Neural Implicit Surfaces , 2021, NeurIPS.

[79]  Andreas Geiger,et al.  MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images , 2021, NeurIPS.

[80]  Hwann-Tzong Chen,et al.  Moving in a 360 World: Synthesizing Panoramic Parallaxes from a Single Panorama , 2021, ArXiv.

[81]  C. Theobalt,et al.  NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction , 2021, NeurIPS.

[82]  Xuesong Li,et al.  Adaptive weight matrix and phantom intensity learning for computed tomography of chemiluminescence. , 2021, Optics Express.

[83]  Christoph H. Lampert,et al.  Unsupervised Video Prediction from a Single Frame by Estimating 3D Dynamic Scene Structure , 2021, ArXiv.

[84]  Kieran A. Murphy,et al.  Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold , 2021, ICML.

[85]  R. Venkatesh Babu,et al.  Deep Implicit Surface Point Prediction Networks , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[86]  O. Sorkine-Hornung,et al.  Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields , 2021, ICLR.

[87]  Andrew Zisserman,et al.  NeRF in detail: Learning to sample for view synthesis , 2021, ArXiv.

[88]  N. Mitra,et al.  MoCo‐Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary Monocular Cameras , 2021, Comput. Graph. Forum.

[89]  Vincent Sitzmann,et al.  Deep Medial Fields , 2021, ArXiv.

[90]  Marc Pollefeys,et al.  Shape As Points: A Differentiable Poisson Solver , 2021, NeurIPS.

[91]  Vincent Sitzmann,et al.  Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering , 2021, NeurIPS.

[92]  Paul Debevec,et al.  NeRFactor , 2021, ACM Trans. Graph..

[93]  Yang Liu,et al.  Spline Positional Encoding for Learning 3D Implicit Signed Distance Fields , 2021, IJCAI.

[94]  Christian Theobalt,et al.  Neural actor , 2021, ACM Trans. Graph..

[95]  Leif Kobbelt,et al.  3D Shape Generation with Grid-based Implicit Functions , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  David J. Crandall,et al.  The Affective Growth of Computer Vision , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  Hung-Yu Tseng,et al.  Stylizing 3D Scene via Implicit Representation and HyperNetwork , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[98]  Dario Izzo,et al.  Geodesy of irregular small bodies via neural density fields: geodesyNets , 2021, ArXiv.

[99]  Matthias Zwicker,et al.  Neural radiosity , 2021, ACM Trans. Graph..

[100]  I. Kevrekidis,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[101]  Shi-Min Hu,et al.  Recursive-NeRF: An Efficient and Dynamically Growing NeRF , 2021, IEEE Transactions on Visualization and Computer Graphics.

[102]  Yi Xu,et al.  NeuLF: Efficient Novel View Synthesis with Neural 4D Light Field , 2021, EGSR.

[103]  Zhoutong Zhang,et al.  Editing Conditional Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[104]  Johannes Kopf,et al.  Dynamic View Synthesis from Dynamic Monocular Video , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[105]  Simon Lucey,et al.  Neural Trajectory Fields for Dynamic Novel View Synthesis , 2021, ArXiv.

[106]  D. Chen,et al.  Electrocardio Panorama: Synthesizing New ECG views with Self-supervision , 2021, IJCAI.

[107]  Dario Izzo,et al.  Vision-based Neural Scene Representations for Spacecraft , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[108]  Berivan Isik,et al.  Neural 3D Scene Compression via Model Compression , 2021, ArXiv.

[109]  Gordon Wetzstein,et al.  Acorn , 2021, ACM Trans. Graph..

[110]  Tao Yu,et al.  Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer RGBD Sensors , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Shinji Ogaki,et al.  A Survey on Bounding Volume Hierarchies for Ray Tracing , 2021, Comput. Graph. Forum.

[112]  Jingyi Yu,et al.  Editable free-viewpoint video using a layered neural representation , 2021, ACM Trans. Graph..

[113]  Byron Boots,et al.  STORM: An Integrated Framework for Fast Joint-Space Model-Predictive Control for Reactive Manipulation , 2021, CoRL.

[114]  Felix Heide,et al.  Neural Ray-Tracing: Learning Surfaces and Reflectance for Relighting and View Synthesis , 2021, ArXiv.

[115]  Philip A. Chou,et al.  3D Scene Compression through Entropy Penalized Neural Representation Functions , 2021, 2021 Picture Coding Symposium (PCS).

[116]  Andrea Tagliasacchi,et al.  Vector Neurons: A General Framework for SO(3)-Equivariant Networks , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[117]  Hyojin Kim,et al.  Dynamic CT Reconstruction from Limited Views with Implicit Neural Representations and Parametric Motion Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[118]  G. Karniadakis,et al.  Parallel Physics-Informed Neural Networks via Domain Decomposition , 2021, J. Comput. Phys..

[119]  Andreas Geiger,et al.  UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[120]  Dario Izzo,et al.  Shadow Neural Radiance Fields for Multi-view Satellite Photogrammetry , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[121]  R. Giryes,et al.  SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization , 2021, NeurIPS.

[122]  Ricardo Martin-Brualla,et al.  FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category Modelling , 2021, 2021 International Conference on 3D Vision (3DV).

[123]  Andreas Geiger,et al.  Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[124]  Nuno Vasconcelos,et al.  A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[125]  Ming-Yu Liu,et al.  GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[126]  Gerard Pons-Moll,et al.  Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Michael J. Black,et al.  LEAP: Learning Articulated Occupancy of People , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[128]  Antonio Torralba,et al.  BARF: Bundle-Adjusting Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[129]  Hujun Bao,et al.  StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Joshua A. Levine,et al.  Compressive Neural Representations of Volumetric Scalar Fields , 2021, Comput. Graph. Forum.

[131]  Dan B. Goldman,et al.  Neural RGB-D Surface Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[132]  Jason M. Saragih,et al.  Pixel Codec Avatars , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[133]  R. Ramamoorthi,et al.  Modulated Periodic Activations for Generalizable Local Functional Representations , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[134]  Michael J. Black,et al.  SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[135]  Zirui Wang,et al.  Direct-PoseNet: Absolute Pose Regression with Photometric Consistency , 2021, 2021 International Conference on 3D Vision (3DV).

[136]  Stephen Lin,et al.  Neural Articulated Radiance Field , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[137]  Michael J. Black,et al.  SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[138]  Jingyi Yu,et al.  MirrorNeRF: One-shot Neural Portrait Radiance Field from Multi-mirror Catadioptric Imaging , 2021, 2021 IEEE International Conference on Computational Photography (ICCP).

[139]  Jingyi Yu,et al.  Convolutional Neural Opacity Radiance Fields , 2021, 2021 IEEE International Conference on Computational Photography (ICCP).

[140]  Yuke Zhu,et al.  Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations , 2021, Robotics: Science and Systems.

[141]  Kristian Kersting,et al.  Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation , 2021, ArXiv.

[142]  Nitish Srivastava,et al.  Unconstrained Scene Generation with Locally Conditioned Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[143]  Noah Snavely,et al.  PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Adam R. Kosiorek,et al.  NeRF-VAE: A Geometry Aware 3D Scene Generative Model , 2021, ICML.

[145]  Angela Dai,et al.  NPMs: Neural Parametric Models for 3D Deformable Shapes , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[146]  Hammad Mazhar,et al.  RGB-D Local Implicit Function for Depth Completion of Transparent Objects , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Hujun Bao,et al.  NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Pieter Abbeel,et al.  Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[149]  Andreas Geiger,et al.  CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields , 2021, 2021 International Conference on 3D Vision (3DV).

[150]  Niloy J. Mitra,et al.  Neural Surface Maps , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[151]  Tobias Ritschel,et al.  Unsupervised Learning of 3D Object Categories from Videos in the Wild , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[152]  Hao Su,et al.  MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[153]  Hao Su,et al.  GNeRF: GAN-based Neural Radiance Field without Posed Camera , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[154]  Stefan Leutenegger,et al.  In-Place Scene Labelling and Understanding with Implicit Scene Representation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[155]  Changhu Wang,et al.  MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[156]  Jonathan T. Barron,et al.  Baking Neural Radiance Fields for Real-Time View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[157]  Yiyi Liao,et al.  KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[158]  Ren Ng,et al.  PlenOctrees for Real-time Rendering of Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[159]  Pratul P. Srinivasan,et al.  Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[160]  Edgar Sucar,et al.  iMAP: Implicit Mapping and Positioning in Real-Time , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[161]  Gordon Wetzstein,et al.  Neural Lumigraph Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  H. Bao,et al.  AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[163]  Pulkit Agrawal,et al.  The Low-Rank Simplicity Bias in Deep Networks , 2021, Trans. Mach. Learn. Res..

[164]  Stephan J. Garbin,et al.  FastNeRF: High-Fidelity Neural Rendering at 200FPS , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[165]  Lan Xu,et al.  NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering using RGB Cameras , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[166]  Francesc Moreno-Noguer,et al.  SMPLicit: Topology-aware Generative Model for Clothed People , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[167]  Supasorn Suwajanakorn,et al.  NeX: Real-time View Synthesis with Neural Basis Expansion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[168]  C. R. A. Chaitanya,et al.  DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks , 2021, Comput. Graph. Forum.

[169]  Yee Whye Teh,et al.  COIN: COmpression with Implicit Neural representations , 2021, ICLR 2021.

[170]  Yannick Hold-Geoffroy,et al.  NeuTex: Neural Texture Mapping for Volumetric Neural Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[171]  Pratul P. Srinivasan,et al.  IBRNet: Learning Multi-View Image-Based Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[172]  Bernhard Thomaszewski,et al.  NTopo: Mesh-free Topology Optimization using Implicit Neural Representations , 2021, NeurIPS.

[173]  V. Ferrari,et al.  ShaRF: Shape-conditioned Radiance Fields from a Single View , 2021, ICML.

[174]  V. Prisacariu,et al.  NeRF-: Neural Radiance Fields Without Known Camera Parameters , 2021, ArXiv.

[175]  Brendt Wohlberg,et al.  CoIL: Coordinate-based Internal Learning for Imaging Inverse Problems , 2021, 2102.05181.

[176]  Victor Adrian Prisacariu,et al.  Towards Generalising Neural Implicit Representations , 2021, ArXiv.

[177]  Charles T. Loop,et al.  Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[178]  Ersin Yumer,et al.  S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Amit Raj,et al.  Pixel-aligned Volumetric Avatars , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[180]  Z. Wang,et al.  Non-line-of-Sight Imaging via Neural Transient Fields , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[181]  Hujun Bao,et al.  Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[182]  M. Zollhöfer,et al.  Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[183]  Tanner Schmidt,et al.  STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in Motion with Neural Rendering , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[184]  Tal Hassner,et al.  HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[185]  Jiajun Wu,et al.  Neural Radiance Flow for 4D View Synthesis and Video Processing , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[186]  Michael Zollhöfer,et al.  Learning Compositional Radiance Fields of Dynamic Human Heads , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[187]  Chandan Yeshwanth,et al.  SceneFormer: Indoor Scene Generation with Transformers , 2020, 2021 International Conference on 3D Vision (3DV).

[188]  Xiaolong Wang,et al.  Learning Continuous Image Representation with Local Implicit Image Function , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[189]  Jiajun Wu,et al.  Object-Centric Neural Scene Rendering , 2020, ArXiv.

[190]  Kui Jia,et al.  Deep Optimized Priors for 3D Shape Modeling and Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[191]  Olga Sorkine-Hornung,et al.  Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[192]  Jonathan T. Barron,et al.  iNeRF: Inverting Neural Radiance Fields for Pose Estimation , 2020, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[193]  Chia-Kai Liang,et al.  Portrait Neural Radiance Fields from a Single Image , 2020, ArXiv.

[194]  Geoffrey E. Hinton,et al.  Canonical Capsules: Unsupervised Capsules in Canonical Pose , 2020, NeurIPS.

[195]  Jonathan T. Barron,et al.  NeRD: Neural Reflectance Decomposition from Image Collections , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[196]  Jonathan T. Barron,et al.  NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[197]  Justus Thies,et al.  Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[198]  Eli Shechtman,et al.  Spatially-Adaptive Pixelwise Networks for Fast Image Translation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[199]  Gordon Wetzstein,et al.  AutoInt: Automatic Integration for Fast Neural Volume Rendering , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[200]  Pratul P. Srinivasan,et al.  Learned Initializations for Optimizing Coordinate-Based Neural Representations , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[201]  Angjoo Kanazawa,et al.  pixelNeRF: Neural Radiance Fields from One or Few Images , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[202]  Jiajun Wu,et al.  pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[203]  Justus Thies,et al.  Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[204]  Daniel Cremers,et al.  i3DMM: Deep Implicit 3D Morphable Model of Human Heads , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[205]  Victor Lempitsky,et al.  Image Generators with Conditionally-Independent Pixel Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[206]  Francesc Moreno-Noguer,et al.  D-NeRF: Neural Radiance Fields for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[207]  Zhengqi Li,et al.  Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[208]  Matthias Zwicker,et al.  Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces , 2020, ICML.

[209]  Gurprit Singh,et al.  Neural light field 3D printing , 2020, ACM Trans. Graph..

[210]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[211]  Wei Jiang,et al.  DeRF: Decomposed Radiance Fields , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[212]  Changil Kim,et al.  Space-time Neural Irradiance Fields for Free-Viewpoint Video , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[213]  Mohamed Elhoseiny,et al.  Adversarial Generation of Continuous Images , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[214]  Andreas Geiger,et al.  GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[215]  Felix Heide,et al.  Neural Scene Graphs for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[216]  Luciano Silva,et al.  Learning to Orient Surfaces by Self-supervised Spherical CNNs , 2020, NeurIPS.

[217]  J. Cortés,et al.  Learning Barrier Functions With Memory for Robust Safe Navigation , 2020, IEEE Robotics and Automation Letters.

[218]  Tomer Galanti,et al.  On the Modularity of Hypernetworks , 2020, NeurIPS.

[219]  Gordon Wetzstein,et al.  Semantic Implicit Neural Scene Representations With Semi-Supervised Training , 2020, 2020 International Conference on 3D Vision (3DV).

[220]  Gerard Pons-Moll,et al.  Neural Unsigned Distance Fields for Implicit Function Learning , 2020, NeurIPS.

[221]  Bharat Lal Bhatnagar,et al.  LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration , 2020, NeurIPS.

[222]  Simon Lucey,et al.  SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images , 2020, NeurIPS.

[223]  Kai Zhang,et al.  NeRF++: Analyzing and Improving Neural Radiance Fields , 2020, ArXiv.

[224]  Alex Trevithick,et al.  GRF: Learning a General Radiance Field for 3D Representation and Rendering , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[225]  Karol Myszkowski,et al.  X-Fields , 2020, ACM Trans. Graph..

[226]  Gaurav S. Sukhatme,et al.  Learning Equality Constraints for Motion Planning on Manifolds , 2020, CoRL.

[227]  Mathew Halm,et al.  ContactNets: Learning of Discontinuous Contact Dynamics with Smooth, Implicit Representations , 2020, CoRL.

[228]  Gerard Pons-Moll,et al.  Implicit Feature Networks for Texture Completion from Partial 3D Data , 2020, ECCV Workshops.

[229]  Behnam Neyshabur,et al.  Extreme Memorization via Scale of Initialization , 2020, ICLR.

[230]  Leonidas J. Guibas,et al.  Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images , 2020, ECCV.

[231]  Yan Zhang,et al.  Grasping Field: Learning Implicit Representations for Human Grasps , 2020, 2020 International Conference on 3D Vision (3DV).

[232]  Yannick Hold-Geoffroy,et al.  Neural Reflectance Fields for Appearance Acquisition , 2020, ArXiv.

[233]  Davide Scaramuzza,et al.  Fisher Information Field: an Efficient and Differentiable Map for Perception-aware Planning , 2020, ArXiv.

[234]  L. Guibas,et al.  CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations , 2020, NeurIPS.

[235]  Jonathan T. Barron,et al.  NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[236]  M. Zollhöfer,et al.  PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations , 2020, ECCV.

[237]  Volkan Isler,et al.  Continuous Object Representation Networks: Novel View Synthesis without Target View Supervision , 2020, NeurIPS.

[238]  Hao Li,et al.  Monocular Real-Time Volumetric Performance Capture , 2020, ECCV.

[239]  Gurprit Singh,et al.  Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D Reconstruction with Symmetry , 2020, ECCV.

[240]  Bharat Lal Bhatnagar,et al.  Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction , 2020, ECCV.

[241]  Kyaw Zaw Lin,et al.  Neural Sparse Voxel Fields , 2020, NeurIPS.

[242]  Yannick Hold-Geoffroy,et al.  Deep Reflectance Volumes: Relightable Reconstructions from Multi-View Photometric Images , 2020, ECCV.

[243]  Vladimir G. Kim,et al.  Coupling Explicit and Implicit Surface Representations for Generative 3D Modeling , 2020, ECCV.

[244]  Tao Yu,et al.  PaMIR: Parametric Model-Conditioned Implicit Representation for Image-Based Human Reconstruction , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[245]  Chris G. Willcocks,et al.  Gradient Origin Networks , 2020, ICLR.

[246]  Andreas Geiger,et al.  GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis , 2020, NeurIPS.

[247]  Noah Snavely,et al.  An Analysis of SVD for Deep Rotation Estimation , 2020, NeurIPS.

[248]  D. Zorin,et al.  Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[249]  Jonathan T. Barron,et al.  Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains , 2020, NeurIPS.

[250]  Gordon Wetzstein,et al.  MetaSDF: Meta-learning Signed Distance Functions , 2020, NeurIPS.

[251]  Gordon Wetzstein,et al.  Implicit Neural Representations with Periodic Activation Functions , 2020, NeurIPS.

[252]  Stefano Soatto,et al.  Geo-PIFu: Geometry and Pixel Aligned Implicit Functions for Single-view Human Reconstruction , 2020, NeurIPS.

[253]  Sam Devlin,et al.  Analytic Manifold Learning: Unifying and Evaluating Representations for Continuous Control , 2020, ArXiv.

[254]  Yaron Lipman,et al.  SAL++: Sign Agnostic Learning with Derivatives , 2020, ArXiv.

[255]  Ameya D. Jagtap,et al.  Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations , 2020, AAAI Spring Symposium: MLPS.

[256]  Eric Galin,et al.  Segment Tracing Using Local Lipschitz Bounds , 2020, Comput. Graph. Forum.

[257]  Karthik Kashinath,et al.  MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[258]  Kai Xu,et al.  Learning Generative Models of 3D Structures , 2020, Eurographics.

[259]  Hao Li,et al.  ARCH: Animatable Reconstruction of Clothed Humans , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[260]  Gordon Wetzstein,et al.  State of the Art on Neural Rendering , 2020, Comput. Graph. Forum.

[261]  Noah Snavely,et al.  DualSDF: Semantic Shape Manipulation Using a Two-Level Representation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[262]  Tao Yu,et al.  Robust 3D Self-Portraits in Seconds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[263]  Hanbyul Joo,et al.  PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[264]  Kamyar Azizzadenesheli,et al.  EikoNet: Solving the Eikonal Equation With Deep Neural Networks , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[265]  Richard A. Newcombe,et al.  Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction , 2020, ECCV.

[266]  Ronen Basri,et al.  Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance , 2020, NeurIPS.

[267]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[268]  Thomas Funkhouser,et al.  Local Implicit Grid Representations for 3D Scenes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[269]  Marc Pollefeys,et al.  Convolutional Occupancy Networks , 2020, ECCV.

[270]  Gerard Pons-Moll,et al.  Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[271]  Y. Lipman,et al.  Implicit Geometric Regularization for Learning Shapes , 2020, ICML.

[272]  Srinath Sridhar,et al.  Continuous Geodesic Convolutions for Learning on 3D Shapes , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[273]  Ron Kimmel,et al.  The Whole Is Greater Than the Sum of Its Nonrigid Parts , 2020, ArXiv.

[274]  Ravi Teja Mullapudi,et al.  Learning to Move with Affordance Maps , 2020, ICLR.

[275]  A. Morales,et al.  DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection , 2020, Inf. Fusion.

[276]  Andreas Geiger,et al.  Differentiable Volumetric Rendering: Learning Implicit 3D Representations Without 3D Supervision , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[277]  Thomas Funkhouser,et al.  Local Deep Implicit Functions for 3D Shape , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[278]  N. Mitra,et al.  Learning a Neural 3D Texture Space From 2D Exemplars , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[279]  Daniele Panozzo,et al.  VoronoiNet : General Functional Approximators with Local Support , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[280]  Geoffrey E. Hinton,et al.  NASA: Neural Articulated Shape Approximation , 2019, ECCV.

[281]  Yinda Zhang,et al.  DIST: Rendering Deep Implicit Signed Distance Function With Differentiable Sphere Tracing , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[282]  Y. Lipman,et al.  SAL: Sign Agnostic Learning of Shapes From Raw Data , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[283]  Hao Li,et al.  Learning to Infer Implicit Surfaces without 3D Supervision , 2019, NeurIPS.

[284]  Andreas Geiger,et al.  Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[285]  Xavier Snelgrove,et al.  Fourier-CPPNs for Image Synthesis , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[286]  Geoffrey E. Hinton,et al.  CvxNet: Learnable Convex Decomposition , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[287]  Tristan Bepler,et al.  Reconstructing continuous distributions of 3D protein structure from cryo-EM images , 2019, ICLR.

[288]  Lior Wolf,et al.  Deep Meta Functionals for Shape Representation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[289]  Mathieu Aubry,et al.  Learning elementary structures for 3D shape generation and matching , 2019, NeurIPS.

[290]  Daniel D. Lee,et al.  Higher-Order Function Networks for Learning Composable 3D Object Representations , 2019, ICLR.

[291]  Yaser Sheikh,et al.  Neural volumes , 2019, ACM Trans. Graph..

[292]  Gordon Wetzstein,et al.  Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations , 2019, NeurIPS.

[293]  Yaron Lipman,et al.  Controlling Neural Level Sets , 2019, NeurIPS.

[294]  Duygu Ceylan,et al.  DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction , 2019, NeurIPS.

[295]  Andreas Geiger,et al.  Texture Fields: Learning Texture Representations in Function Space , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[296]  Hao Li,et al.  PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[297]  Martial Hebert,et al.  Learning Unsupervised Multi-View Stereopsis via Robust Photometric Consistency , 2019, ArXiv.

[298]  Ravi Ramamoorthi,et al.  Local light field fusion , 2019, ACM Trans. Graph..

[299]  Yong-Liang Yang,et al.  HoloGAN: Unsupervised Learning of 3D Representations From Natural Images , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[300]  Rufael Mekuria,et al.  Emerging MPEG Standards for Point Cloud Compression , 2019, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[301]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[302]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[303]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[304]  Leonidas J. Guibas,et al.  Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[305]  Yi Zhou,et al.  On the Continuity of Rotation Representations in Neural Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[306]  Mathieu Aubry,et al.  Unsupervised Image Decomposition in Vector Layers , 2018, 2020 IEEE International Conference on Image Processing (ICIP).

[307]  Sebastian Nowozin,et al.  Occupancy Networks: Learning 3D Reconstruction in Function Space , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[308]  Hao Zhang,et al.  Learning Implicit Fields for Generative Shape Modeling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[309]  Gordon Wetzstein,et al.  DeepVoxels: Learning Persistent 3D Feature Embeddings , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[310]  Joan Bruna,et al.  Deep Geometric Prior for Surface Reconstruction , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[311]  Yoshua Bengio,et al.  Feature-wise transformations , 2018, Distill.

[312]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[313]  Arthur Jacot,et al.  Neural Tangent Kernel: Convergence and Generalization in Neural Networks , 2018, NeurIPS.

[314]  Mathieu Aubry,et al.  3D-CODED: 3D Correspondences by Deep Deformation , 2018, ECCV.

[315]  Matthias Nießner,et al.  State of the Art on 3D Reconstruction with RGB‐D Cameras , 2018, Comput. Graph. Forum.

[316]  Johannes Hanika,et al.  Monte Carlo Methods for Volumetric Light Transport Simulation , 2018, Comput. Graph. Forum.

[317]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[318]  Mathieu Aubry,et al.  A Papier-Mache Approach to Learning 3D Surface Generation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[319]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[320]  Michael J. Black,et al.  Learning a model of facial shape and expression from 4D scans , 2017, ACM Trans. Graph..

[321]  David Lopez-Paz,et al.  Optimizing the Latent Space of Generative Networks , 2017, ICML.

[322]  Karen Simonyan,et al.  Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders , 2017, ICML.

[323]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[324]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[325]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[326]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[327]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.

[328]  Quoc V. Le,et al.  HyperNetworks , 2016, ICLR.

[329]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[330]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[331]  Oliver Brock,et al.  Interactive Perception: Leveraging Action in Perception and Perception in Action , 2016, IEEE Transactions on Robotics.

[332]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[333]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[334]  Michael J. Black,et al.  SMPL: A Skinned Multi-Person Linear Model , 2023 .

[335]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[336]  Gaurav S. Sukhatme,et al.  Interactive affordance map building for a robotic task , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[337]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[338]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[339]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[340]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2014, 1406.2661.

[341]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[342]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[343]  Stephen Lin,et al.  Global illumination with radiance regression functions , 2013, ACM Trans. Graph..

[344]  Timo Aila,et al.  Fast parallel construction of high-quality bounding volume hierarchies , 2013, HPG '13.

[345]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[346]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[347]  Oliver Kroemer,et al.  Learning robot grasping from 3-D images with Markov Random Fields , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[348]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[349]  Mateu Sbert,et al.  Efficient Ray Tracing Using Interval Analysis , 2007, PPAM.

[350]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[351]  K. Torrance,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[352]  Kenneth O. Stanley Compositional pattern producing networks: A novel abstraction of development , 2007, Genetic Programming and Evolvable Machines.

[353]  Michael Mandelstam,et al.  On the Bandwagon? , 2007 .

[354]  C. Bajaj,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[355]  Vijay Kumar,et al.  Controlling Swarms of Robots Using Interpolated Implicit Functions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[356]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[357]  Siti Mariyam Hj. Shamsuddin,et al.  3D object reconstruction and representation using neural networks , 2004, GRAPHITE '04.

[358]  Tülay Adali,et al.  Approximation by Fully Complex Multilayer Perceptrons , 2003, Neural Computation.

[359]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[360]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[361]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[362]  Ernan McMullin,et al.  The Origins of the Field Concept in Physics , 2002 .

[363]  Michael Thomsen,et al.  Virtual-reality modeling , 2000 .

[364]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[365]  Francis Neelamkavil,et al.  Approximating Reflectance Functions using Neural Networks , 1998, Rendering Techniques.

[366]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[367]  Michael D. Lemmon,et al.  Oscillatory Neural Fields for Globally Optimal Path Planning , 1991, NIPS.

[368]  Michael Lemmon,et al.  2-Degree-of-freedom Robot Path Planning using Cooperative Neural Fields , 1991, Neural Computation.

[369]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[370]  K. Perlin,et al.  Hypertexture , 1989, SIGGRAPH.

[371]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[372]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[373]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.

[374]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[375]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[376]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[377]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[378]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[379]  Turner Whitted,et al.  A 3-dimensional representation for fast rendering of complex scenes , 1980, SIGGRAPH '80.

[380]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[381]  Berthold K. P. Horn SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .

[382]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[383]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[384]  C. Brune,et al.  Implicit Neural Representations for Deformable Image Registration , 2022, MIDL.

[385]  Hujun Bao,et al.  Animatable Neural Radiance Fields for Human Body Modeling , 2021, ArXiv.

[386]  Yebin Liu,et al.  DoubleField: Bridging the Neural Surface and Radiance Fields for High-fidelity Human Rendering , 2021, ArXiv.

[387]  Michael Goesele,et al.  Neural 3D Video Synthesis , 2021, ArXiv.

[388]  Helge Rhodin,et al.  A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering , 2021, ArXiv.

[389]  A. Wills,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[390]  Brendt Wohlberg,et al.  CoIL: Coordinate-Based Internal Learning for Tomographic Imaging , 2021, IEEE Transactions on Computational Imaging.

[391]  Hui Xue,et al.  Learning Deeper Non-Monotonic Networks by Softly Transferring Solution Space , 2021, IJCAI.

[392]  Eitan Grinspun,et al.  Model reduction for the material point method via learning the deformation map and its spatial-temporal gradients , 2021, ArXiv.

[393]  Serge J. Belongie,et al.  Geometry Processing with Neural Fields , 2023, NeurIPS.

[394]  Rasmus R. Paulsen,et al.  Implicit Neural Distance Representation for Unsupervised and Supervised Classification of Complex Anatomies , 2021, MICCAI.

[395]  Z. Wang,et al.  Multi-scene Representation Learning with Neural Radiance Fields , 2021, Journal of Physics: Conference Series.

[396]  Zhenyi He,et al.  Foveated Neural Radiance Fields for Real-Time and Egocentric Virtual Reality , 2021, ArXiv.

[397]  Christof Lutteroth,et al.  Grid-Functioned Neural Networks , 2021, ICML.

[398]  Steve Marschner,et al.  A Taxonomy of Bidirectional Scattering Distribution Function Lobes for Rendering Engineers , 2020, MAM@EGSR.

[399]  WEIGHT-ENCODED NEURAL IMPLICIT 3D SHAPES , 2020 .

[400]  Stephen Coombes,et al.  Neural fields : theory and applications , 2014 .

[401]  Brent Burley Physically-Based Shading at Disney , 2012 .

[402]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[403]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[404]  Andrew Zisserman,et al.  Multiple view geometry in computer vision (2. ed.) , 2006 .

[405]  Tomas Akenine-Möller,et al.  A dynamic bounding volume hierarchy for generalized collision detection , 2006, Comput. Graph..

[406]  S. Coombes Neural fields , 2006, Scholarpedia.

[407]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[408]  Robin Green,et al.  Spherical Harmonic Lighting: The Gritty Details , 2003 .

[409]  Ronald Fedkiw,et al.  Signed Distance Functions , 2003 .

[410]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[411]  John C. Hart,et al.  Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces , 1996, The Visual Computer.

[412]  Reinhard Klette,et al.  Local and global integration of discrete vector fields , 1996, TFCV.

[413]  James J. Thomas,et al.  Proceedings of the 16th annual conference on Computer graphics and interactive techniques , 1989, SIGGRAPH.

[414]  Griewank,et al.  On automatic differentiation , 1988 .

[415]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .