Completeness of randomized kinodynamic planners with state-based steering

The panorama of probabilistic completeness results for kinodynamic planners is still confusing. Most existing completeness proofs require strong assumptions that are difficult, if not impossible, to verify in practice. To make completeness results more useful, it is thus sensible to establish a classification of the various types of constraints and planning methods, and then attack each class with specific proofs and hypotheses that can be verified in practice. We propose such a classification, and provide a proof of probabilistic completeness for an important class of planners, namely those whose steering method is based on the interpolation of system trajectories in the state space. We also provide design guidelines for the interpolation function and discuss two criteria arising from our analysis: local boundedness and acceleration compliance.

[1]  Mike Stilman,et al.  Probabilistically complete kinodynamic planning for robot manipulators with acceleration limits , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Nicholas M. Patrikalakis,et al.  Analysis of Asymptotically Optimal Sampling-based Motion Planning Algorithms for Lipschitz Continuous Dynamical Systems , 2014, ArXiv.

[3]  Kris K. Hauser,et al.  Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds , 2013, Robotics: Science and Systems.

[4]  Giuseppe Oriolo,et al.  Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  R. Sreerama Kumar,et al.  A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits , 2009, Robotics Auton. Syst..

[6]  Leslie Pack Kaelbling,et al.  LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics , 2012, 2012 IEEE International Conference on Robotics and Automation.

[7]  Kevin M. Lynch,et al.  Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..

[8]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[9]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[10]  Mike Stilman,et al.  Kinodynamic RRTs with Fixed Time Step and Best-Input Extension Are Not Probabilistically Complete , 2014, WAFR.

[11]  Yoshihiko Nakamura,et al.  Leveraging Cone Double Description for Multi-contact Stability of Humanoids with Applications to Statics and Dynamics , 2015, Robotics: Science and Systems.

[12]  Emilio Frazzoli,et al.  Free-configuration biased sampling for motion planning , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Emilio Frazzoli,et al.  Sampling-based optimal motion planning for non-holonomic dynamical systems , 2013, 2013 IEEE International Conference on Robotics and Automation.

[14]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[15]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[16]  James J. Kuffner,et al.  Adaptive workspace biasing for sampling-based planners , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[18]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[19]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[20]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[21]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[22]  Pierre-Brice Wieber On the stability of walking systems , 2002 .

[23]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[24]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Victor Ng-Thow-Hing,et al.  Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Yoshihiko Nakamura,et al.  Kinodynamic Planning in the Configuration Space via Velocity Interval Propagation , 2013 .

[27]  Russ Tedrake,et al.  LQR-trees: Feedback motion planning on sparse randomized trees , 2009, Robotics: Science and Systems.

[28]  Igor Skrjanc,et al.  Optimal cooperative collision avoidance between multiple robots based on Bernstein-Bézier curves , 2010, Robotics Auton. Syst..

[29]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  Yoshihiko Nakamura,et al.  Nonholonomic path planning of space robots via a bidirectional approach , 1991, IEEE Trans. Robotics Autom..

[31]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[32]  Yoshihiko Nakamura,et al.  Nonholonomic path planning of space robots via bi-directional approach , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[33]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[34]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[35]  Karun B. Shimoga,et al.  Robot Grasp Synthesis Algorithms: A Survey , 1996, Int. J. Robotics Res..

[36]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning , 2010, IEEE Robotics & Automation Magazine.

[37]  Matthew R. Walter,et al.  Reachability-guided sampling for planning under differential constraints , 2009, 2009 IEEE International Conference on Robotics and Automation.