Computing push plans for disk-shaped robots

Suppose we want to move a passive object along a given path, among obstacles in the plane, by pushing it with an active robot. We present two algorithms to compute a push plan for the case that the object and robot are disks and the obstacles are non-intersecting line segments. The first algorithm assumes that the robot must maintain contact with the object at all times, and produces a shortest path. There are also situations, however, where the robot has no choice but to let go of the object occasionally. Our second algorithm handles such cases, but no longer guarantees that the produced path is the shortest possible.

[1]  Pedro Ramos,et al.  A Unified Approach to Conic Visibility , 2000, Algorithmica.

[2]  Mark H. Overmars,et al.  Pushing a Disk Using Compliance , 2007, IEEE Transactions on Robotics.

[3]  Leonidas J. Guibas,et al.  Linear time algorithms for visibility and shortest path problems inside simple polygons , 2011, SCG '86.

[4]  Mark H. Overmars,et al.  Path planning for pushing a disk using compliance , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Dennis Nieuwenhuisen,et al.  Path planning in changeable environments , 2004 .

[6]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[7]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[8]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[9]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[10]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.

[11]  Michel Pocchiola,et al.  Computing the visibility graph via pseudo-triangulations , 1995, SCG '95.

[12]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[13]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[14]  M.T. Mason,et al.  Dynamic manipulation , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[15]  Bruce Randall Donald,et al.  Algorithmic and Computational Robotics: New Directions , 2001 .

[16]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[17]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[18]  Mark H. Overmars,et al.  Pushing using compliance , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[19]  Rajeev Motwani,et al.  Nonholonomic path planning for pushing a disk among obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[20]  Arthur C. Sanderson,et al.  Minimization of energy in quasi-static manipulation , 1988, IEEE Trans. Robotics Autom..