Asymptotic Optimality of Rapidly Exploring Random Tree

In this paper we investigate the asymptotic optimality property of a randomized sampling based motion planner, namely RRT. We prove that a RRT planner is not an asymptotically optimal motion planner. Our result, while being consistent with similar results which exist in the literature, however, brings out an important characteristics of a RRT planner. We show that the degree distribution of the tree vertices follows a power law in an asymptotic sense. A simulation result is presented to support the theoretical claim. Based on these results we also try to establish a simple necessary condition for sampling based motion planners to be asymptotically optimal.

[1]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[2]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[3]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[4]  Debasish Ghose,et al.  Probabilistic analysis of sampling based path planning algorithms , 2013, 2013 IEEE International Symposium on Intelligent Control (ISIC).

[5]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[6]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Lydia E. Kavraki,et al.  Measure theoretic analysis of probabilistic path planning , 2004, IEEE Transactions on Robotics and Automation.

[9]  Micha Sharir,et al.  On shortest paths amidst convex polyhedra , 1987, SCG '86.

[10]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[11]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[12]  Siddhartha Chaudhuri,et al.  Smoothed analysis of probabilistic roadmaps , 2009, Comput. Geom..

[13]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[14]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[15]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[16]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[17]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[18]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[19]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  H. Poincaré,et al.  Percolation ? , 1982 .

[21]  Béla Bollobás,et al.  Degree distribution of the FKP network model , 2003, Theor. Comput. Sci..

[22]  Marco Pavone,et al.  Deterministic sampling-based motion planning: Optimality, complexity, and performance , 2015, ISRR.

[23]  J. Reif,et al.  Shortest Paths in Euclidean Space with Polyhedral Obstacles. , 1985 .

[24]  Kostas E. Bekris,et al.  Sampling-based roadmap of trees for parallel motion planning , 2005, IEEE Transactions on Robotics.

[25]  D. Mount On Finding Shortest Paths on Convex Polyhedra. , 1985 .

[26]  Stefano Carpin,et al.  Randomized Motion Planning: a Tutorial , 2006, Int. J. Robotics Autom..