Curved patch mapping and tracking for irregular terrain modeling: Application to bipedal robot foot placement

Abstract Legged robots need to make contact with irregular surfaces, when operating in unstructured natural terrains. Representing and perceiving these areas to reason about potential contact between a robot and its surrounding environment, is still largely an open problem. This paper introduces a new framework to model and map local rough terrain surfaces, for tasks such as bipedal robot foot placement. The system operates in real-time, on data from an RGB-D and an IMU sensor. We introduce a set of parametrized patch models and an algorithm to fit them in the environment. Potential contacts are identified as bounded curved patches of approximately the same size as the robot’s foot sole. This includes sparse seed point sampling, point cloud neighborhood search, and patch fitting and validation. We also present a mapping and tracking system, where patches are maintained in a local spatial map around the robot as it moves. A bio-inspired sampling algorithm is introduced for finding salient contacts. We include a dense volumetric fusion layer for spatiotemporally tracking, using multiple depth data to reconstruct a local point cloud. We present experimental results on a mini-biped robot that performs foot placements on rocks, implementing a 3D foothold perception system, that uses the developed patch mapping and tracking framework.

[1]  Caihua Wang,et al.  Comparison of local plane fitting methods for range data , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Satoshi Kagami,et al.  Biped navigation in rough environments using on-board sensing , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[4]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[5]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[6]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[7]  Alfred A. Rizzi,et al.  Autonomous navigation for BigDog , 2010, 2010 IEEE International Conference on Robotics and Automation.

[8]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[9]  Dominik Belter,et al.  PRECISE SELF-LOCALIZATION OF A WALKING ROBOT ON ROUGH TERRAIN USING PTAM , 2012 .

[10]  Robin Deits,et al.  Continuous humanoid locomotion over uneven terrain using stereo fusion , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[11]  Oussama Khatib,et al.  SupraPeds: Humanoid contact-supported locomotion for 3D unstructured environments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Joel Chestnutt,et al.  Navigation planning for legged robots , 2007 .

[13]  Olivier Stasse,et al.  Toward Reactive Vision-Guided Walking on Rough Terrain: An Inverse-Dynamics Based Approach , 2014, Int. J. Humanoid Robotics.

[14]  Takeo Kanade,et al.  Vision-guided humanoid footstep planning for dynamic environments , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[15]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[16]  Ilan Shimshoni,et al.  Estimating the principal curvatures and the Darboux frame from real 3D range data , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[17]  Marsette Vona,et al.  Sparse surface modeling with curved patches , 2013, 2013 IEEE International Conference on Robotics and Automation.

[18]  Sven Behnke,et al.  Anytime hybrid driving-stepping locomotion planning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Oskar von Stryk,et al.  Supervised footstep planning for humanoid robots in rough terrain tasks using a black box walking controller , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[20]  Wolfram Burgard,et al.  A Bayesian regression approach to terrain mapping and an application to legged robot locomotion , 2009, J. Field Robotics.

[21]  Shuuji Kajita,et al.  Humanoid Robots in the Future , 2009, Adv. Robotics.

[22]  Masayuki Inaba,et al.  Biped humanoid navigation system supervised through interruptible user-interface with asynchronous vision and foot sensor monitoring , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[23]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Satoshi Kagami,et al.  Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor , 2012, Int. J. Robotics Res..

[25]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  金谷 健一 Statistical optimization for geometric computation : theory and practice , 2005 .

[27]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[28]  Ian D. Reid,et al.  Locally Planar Patch Features for Real-Time Structure from Motion , 2004, BMVC.

[29]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[30]  Marsette Vona,et al.  Bio-inspired rough terrain contact patch perception , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Darwin G. Caldwell,et al.  Visual Grasp Affordance Localization in Point Clouds Using Curved Contact Patches , 2017, Int. J. Humanoid Robotics.

[32]  Sylvain Bertrand,et al.  Walking on partial footholds including line contacts with the humanoid robot atlas , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[33]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[34]  Jizhong Xiao,et al.  Fast visual odometry and mapping from RGB-D data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[35]  Andrew Y. Ng,et al.  Stereo vision and terrain modeling for quadruped robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[36]  Hajime Asama,et al.  Development of open humanoid platform DARwIn-OP , 2011, SICE Annual Conference 2011.

[37]  Nikolaos G. Tsagarakis,et al.  Vision-based foothold contact reasoning using curved surface patches , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[38]  Maren Bennewitz,et al.  Anytime search-based footstep planning with suboptimality bounds , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[39]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[40]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[41]  Nikolaos G. Tsagarakis,et al.  Footstep Planning in Rough Terrain for Bipedal Robots Using Curved Contact Patches , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[42]  Maria Isabel Ribeiro,et al.  Gaussian Probability Density Functions: Properties and Error Characterization , 2004 .

[43]  Oskar von Stryk,et al.  Open source integrated 3D footstep planning framework for humanoid robots , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[44]  R. Du,et al.  What Happened at the DARPA Robotics Challenge , and Why ? , 2015 .

[45]  François Keith,et al.  Point-cloud multi-contact planning for humanoids: Preliminary results , 2013, RAM.

[46]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[47]  Daniel Maier,et al.  Integrated perception, mapping, and footstep planning for humanoid navigation among 3D obstacles , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Don Ray Murray,et al.  Patchlets: Representing Stereo Vision Data with Surface Elements , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[49]  Darwin G. Caldwell,et al.  On-line and on-board planning and perception for quadrupedal locomotion , 2015, 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[50]  Nikolaos G. Tsagarakis,et al.  Uncertainty analysis for curved surface contact patches , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[51]  Nassir Navab,et al.  Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Nobuyuki Kita,et al.  Foot landing state estimation from point cloud at a landing place , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[53]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[54]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Johannes Garimort,et al.  Humanoid navigation with dynamic footstep plans , 2011, 2011 IEEE International Conference on Robotics and Automation.

[56]  Chee-Meng Chew,et al.  Blind walking of a planar bipedal robot on sloped terrain , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[57]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[58]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[59]  Doug A. Bowman,et al.  Human‐robot Teaming for Rescue Missions: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge Trials , 2015, J. Field Robotics.

[60]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[61]  Andreas Birk,et al.  Revisiting uncertainty analysis for optimum planes extracted from 3D range sensor point-clouds , 2009, 2009 IEEE International Conference on Robotics and Automation.

[62]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[63]  Daniel Maier,et al.  Real-time navigation in 3D environments based on depth camera data , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[64]  Maren Bennewitz,et al.  Real-time footstep planning in 3D environments , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[65]  Masayuki Inaba,et al.  Walking navigation system of humanoid robot using stereo vision based floor recognition and path planning with multi-layered body image , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[66]  D. Marigold Role of Peripheral Visual Cues in Online Visual Guidance of Locomotion , 2008, Exercise and sport sciences reviews.

[67]  Masahiro Fujita,et al.  3D Perception and Environment Map Generation for Humanoid Robot Navigation , 2008, Int. J. Robotics Res..

[68]  Horst Bunke,et al.  Comparing Curved-Surface Range Image Segmenters , 1998, ICCV.

[69]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[70]  Marsette Vona,et al.  Curved surface contact patches with quantified uncertainty , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[71]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[72]  Luiz Velho,et al.  Image moments-based structuring and tracking of objects , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[73]  Marsette Vona,et al.  Moving Volume KinectFusion , 2012, BMVC.

[74]  Maren Bennewitz,et al.  Real-time footstep planning using a geometric approach , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[75]  Dimitrios Kanoulas,et al.  Curved Surface Patches for Rough Terrain Perception , 2014, ArXiv.

[76]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[77]  Heiko Hirschmüller,et al.  Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain , 2012, Int. J. Robotics Res..

[78]  Michael A. Greenspan,et al.  On the Repeatability of 3D Point Cloud Segmentation Based on Interest Points , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[79]  Min Dai,et al.  Least-squares-based fitting of paraboloids , 2007, Pattern Recognit..

[80]  Piotr Skrzypczynski,et al.  Map-based adaptive foothold planning for unstructured terrain walking , 2010, 2010 IEEE International Conference on Robotics and Automation.

[81]  Roland Siegwart,et al.  Navigation planning for legged robots in challenging terrain , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[82]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[83]  Masayuki Inaba,et al.  Autonomous 3D walking system for a humanoid robot based on visual step recognition and 3D foot step planner , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[84]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[85]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..