Real-time damping estimation for variable impedance actuators

Recently-developed variable damping mechanisms have been exploited as a complement to compliant actuators. While accurate knowledge and control of generated damping is essential for achieving the desired performance, no physical sensor measuring the damping exists. This work introduces a novel non-model-based approach for the estimation of time-variant damping for variable impedance actuation systems. The approach is based only on torque and position/velocity measurements; without the knowledge of system's inputs, to ensure the estimation of both intentional and unintentional changes. Hence, a recursive least square estimator, modified for achieving a proper convergence for the estimation of time-variant parameters, is exploited. Experiments on a variable physical damping actuator are also presented to validate the performance of proposed approach.

[1]  Alin Albu-Schäffer,et al.  State feedback damping control for a multi DOF variable stiffness robot arm , 2011, 2011 IEEE International Conference on Robotics and Automation.

[2]  Nikolaos G. Tsagarakis,et al.  Antagonistic and series elastic actuators: a comparative analysis on the energy consumption , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Giorgio Grioli,et al.  A real-time parametric stiffness observer for VSA devices , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Nikolaos G. Tsagarakis,et al.  A compact compliant actuator (CompAct™) with variable physical damping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[5]  S. Vijayakumar,et al.  Exploiting variable physical damping in rapid movement tasks , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[6]  Nikolaos G. Tsagarakis,et al.  A compact soft actuator unit for small scale human friendly robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[7]  N. G. Tsagarakis,et al.  Analysis and Development of a Semiactive Damper for Compliant Actuation Systems , 2013, IEEE/ASME Transactions on Mechatronics.

[8]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[9]  Nikolaos G. Tsagarakis,et al.  The role of physical damping in compliant actuation systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  B. Swanick,et al.  A recursive least-squares approach to the on-line adaptive control problem† , 1972 .

[11]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..

[12]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[13]  Nikolaos G. Tsagarakis,et al.  On the stiffness design of intrinsic compliant manipulators , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[14]  Nikolaos G. Tsagarakis,et al.  Model-free force tracking control of piezoelectric actuators: Application to variable damping actuator , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Rafael M. Canetti,et al.  Convergence analysis of the least-squares identification algorithm with a variable forgetting factor for time-varying linear systems , 1989, Autom..

[16]  Antonio Bicchi,et al.  Optimality principles in variable stiffness control: The VSA hammer , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Nikolaos G. Tsagarakis,et al.  Optimal control for maximizing velocity of the CompAct™ compliant actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[18]  Miroslav Kárný,et al.  Design of linear quadratic adaptive control: theory and algorithms for practice , 1985, Kybernetika.

[19]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2005, IEEE Trans. Robotics.

[20]  Richard M. Johnstone,et al.  Exponential convergence of recursive least squares with exponential forgetting factor , 1982, 1982 21st IEEE Conference on Decision and Control.

[21]  Nikolaos G. Tsagarakis,et al.  On-line estimation of variable stiffness in flexible robot joints , 2012, Int. J. Robotics Res..

[22]  Paolo Bolzern,et al.  Exponential convergence of a modified directional forgetting identification algorithm , 1990 .

[23]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[24]  Nikolaos G. Tsagarakis,et al.  A Variable Damping module for Variable Impedance Actuation , 2012, 2012 IEEE International Conference on Robotics and Automation.