or Shape-Based Perception? Modulation of V1 Activity by Shape: Image-Statistics

[1]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[2]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[3]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[4]  S. Klein,et al.  Seeing circles: what limits shape perception? , 2000, Vision Research.

[5]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[6]  Ravi S. Menon,et al.  An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings , 2000, Current Biology.

[7]  R. Hess,et al.  What causes non-monotonic tuning of fMRI response to noisy images? , 2002, Current Biology.

[8]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[9]  David J Heeger,et al.  Response Suppression in V1 Agrees with Psychophysics of Surround Masking , 2003, The Journal of Neuroscience.

[10]  T. Albright,et al.  Contextual influences on visual processing. , 2002, Annual review of neuroscience.

[11]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[12]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[13]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[14]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[15]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[16]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[17]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Wilson,et al.  Detection of global structure in Glass patterns: implications for form vision , 1998, Vision Research.

[20]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[21]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[22]  Scott O. Murray,et al.  Perceptual grouping and the interactions between visual cortical areas , 2004, Neural Networks.

[23]  Andrew T. Smith,et al.  Surround modulation measured with functional MRI in the human visual cortex. , 2003, Journal of neurophysiology.

[24]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[25]  E. Wojciulik,et al.  Attention increases neural selectivity in the human lateral occipital complex , 2004, Nature Neuroscience.

[26]  R. F Hess,et al.  Contour integration and cortical processing , 2003, Journal of Physiology-Paris.

[27]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[28]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[29]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[30]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[31]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[33]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[34]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[35]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[36]  Nikos K. Logothetis,et al.  The Effect of Image Scrambling on Visual Cortical BOLD Activity in the Anesthetized Monkey , 2002, NeuroImage.

[37]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[38]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[39]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[40]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[41]  Alan C. Evans,et al.  Automatic volumetric segmentation of human visual retinotopic cortex , 2003, NeuroImage.

[42]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[43]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[44]  H. Wilson,et al.  Concentric orientation summation in human form vision , 1997, Vision Research.

[45]  Alan C. Evans,et al.  Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis , 2002, IEEE Transactions on Medical Imaging.

[46]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[47]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[49]  Kamil Ugurbil,et al.  The role of feature density in determining V1 BOLD fMRI sensitivity to spatial phase structure , 2004 .

[50]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[51]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Robert F Hess,et al.  Sensitivity for global shape detection. , 2003, Journal of vision.

[53]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[54]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[55]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[56]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[57]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[58]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[59]  Nikos K. Logothetis,et al.  Nonmonotonic noise tuning of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey , 2001, Current Biology.

[60]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.