Ergodic Exploration of Distributed Information

This paper presents an active search trajectory synthesis technique for autonomous mobile robots with nonlinear measurements and dynamics. The presented approach uses the ergodicity of a planned trajectory with respect to an expected information density map to close the loop during search. The ergodic control algorithm does not rely on discretization of the search or action spaces and is well posed for coverage with respect to the expected information density whether the information is diffuse or localized, thus trading off between exploration and exploitation in a single-objective function. As a demonstration, we use a robotic electrolocation platform to estimate location and size parameters describing static targets in an underwater environment. Our results demonstrate that the ergodic exploration of distributed information algorithm outperforms commonly used information-oriented controllers, particularly when distractions are present.

[1]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[2]  Stefan B. Williams,et al.  Autonomous exploration of large-scale benthic environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[3]  Fabio Tozeto Ramos,et al.  Bayesian optimisation for active perception and smooth navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Michael A. Goodrich,et al.  Towards combining UAV and sensor operator roles in UAV-enabled visual search , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[5]  Gaurav S. Sukhatme,et al.  Adaptive sampling for environmental field estimation using robotic sensors , 2004, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Joel W. Burdick,et al.  Semidefinite relaxations for stochastic optimal control policies , 2014, 2014 American Control Conference.

[7]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[8]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[9]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[10]  G. Zhang,et al.  An Information Roadmap Method for Robotic Sensor Path Planning , 2009, J. Intell. Robotic Syst..

[11]  R. Fierro,et al.  An information potential approach for tracking and surveilling multiple moving targets using mobile sensor agents , 2011, Defense + Commercial Sensing.

[12]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[13]  Todd D. Murphey,et al.  Trajectory Synthesis for Fisher Information Maximization , 2014, IEEE Transactions on Robotics.

[14]  José-Enrique Simó-Ten,et al.  Using infrared sensors for distance measurement in mobile robots , 2002, Robotics Auton. Syst..

[15]  Rüdiger Krahe,et al.  Electric fishes: neural systems, behaviour and evolution , 2013, Journal of Experimental Biology.

[16]  A. Emery,et al.  Optimal experiment design , 1998 .

[17]  H Jacobs,et al.  Multiscale surveillance of Riemannian manifolds , 2010, Proceedings of the 2010 American Control Conference.

[18]  Frank P. Ferrie,et al.  Viewpoint selection by navigation through entropy maps , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Dezhen Song,et al.  Cooperative Search of Multiple Unknown Transient Radio Sources Using Multiple Paired Mobile Robots , 2014, IEEE Transactions on Robotics.

[20]  J. Karl Hedrick,et al.  Autonomous UAV path planning and estimation , 2009, IEEE Robotics & Automation Magazine.

[21]  Nicholas J. Butko,et al.  Active perception , 2010 .

[22]  Gregory S. Chirikjian,et al.  Probabilistic models of dead-reckoning error in nonholonomic mobile robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  E. Todorov,et al.  A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[24]  Noboru Ohnishi,et al.  Active vision system based on information theory , 1998, Systems and Computers in Japan.

[25]  Sebastian Thrun,et al.  Learning Occupancy Grid Maps with Forward Sensor Models , 2003, Auton. Robots.

[26]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[27]  Kevin M. Lynch,et al.  Active Electrolocation for Underwater Target Localization , 2008, Int. J. Robotics Res..

[28]  Wolfram Burgard,et al.  Exploring Unknown Environments with Mobile Robots using Coverage Maps , 2003, IJCAI.

[29]  Gregory S. Chirikjian,et al.  A diffusion-based algorithm for workspace generation of highly articulated manipulators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[30]  Todd D. Murphey,et al.  Optimal planning for information acquisition , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Todd D. Murphey,et al.  Trajectory optimization for continuous ergodic exploration on the motion group SE(2) , 2013, 52nd IEEE Conference on Decision and Control.

[32]  Camillo J. Taylor,et al.  Dynamic Sensor Planning and Control for Optimally Tracking Targets , 2003, Int. J. Robotics Res..

[33]  Dezhen Song,et al.  Simultaneous Localization of Multiple Unknown and Transient Radio Sources Using a Mobile Robot , 2012, IEEE Transactions on Robotics.

[34]  Fabio Tozeto Ramos,et al.  Bayesian optimisation for Intelligent Environmental Monitoring , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Joao P. Hespanha,et al.  Honey-pot constrained searching with local sensory information , 2006 .

[36]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Michael A. Peshkin,et al.  Finding and identifying simple objects underwater with active electrosense , 2015, Int. J. Robotics Res..

[38]  Tomonari Furukawa,et al.  Multi-vehicle Bayesian Search for Multiple Lost Targets , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[39]  Silvia Ferrari,et al.  Information-Driven Sensor Path Planning by Approximate Cell Decomposition , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  Yang Bai,et al.  Biomimetic and bio-inspired robotics in electric fish research , 2013, Journal of Experimental Biology.

[41]  Gamini Dissanayake,et al.  Planning under uncertainty using model predictive control for information gathering , 2006, Robotics Auton. Syst..

[42]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[43]  B. Roy Frieden,et al.  Science from Fisher Information: A Unification , 2004 .

[44]  Youfu Li,et al.  Information entropy-based viewpoint planning for 3-D object reconstruction , 2005, IEEE Transactions on Robotics.

[45]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[46]  Kian Hsiang Low,et al.  Adaptive multi-robot wide-area exploration and mapping , 2008, AAMAS.

[47]  M. A. MacIver,et al.  Sensory acquisition in active sensing systems , 2006, Journal of Comparative Physiology A.

[48]  J. Hauser A PROJECTION OPERATOR APPROACH TO THE OPTIMIZATION OF TRAJECTORY FUNCTIONALS , 2002 .

[49]  Robert B. Fisher,et al.  A Best Next View Selection Algorithm Incorporating a Quality Criterion , 1998, BMVC.

[50]  Józef Korbicz,et al.  Path planning for moving sensors in parameter estimation of distributed systems , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[51]  J. Karl Hedrick,et al.  Particle filter based information-theoretic active sensing , 2010, Robotics Auton. Syst..

[52]  Fabio Tozeto Ramos,et al.  Bayesian Optimisation for informative continuous path planning , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[53]  Andreas Krause,et al.  Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach , 2007, ICML '07.

[54]  Lawrence Carin,et al.  Application of the theory of optimal experiments to adaptive electromagnetic-induction sensing of buried targets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Todd D. Murphey,et al.  Trajectory optimization for continuous ergodic exploration , 2013, 2013 American Control Conference.

[56]  Mateu Sbert,et al.  Viewpoint Selection using Viewpoint Entropy , 2001, VMV.

[57]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..

[58]  John W. Wegrzyn,et al.  Multiplatform information-based sensor management: an inverted UAV demonstration , 2007, SPIE Defense + Commercial Sensing.

[59]  Silvia Ferrari,et al.  An adaptive artificial potential function approach for geometric sensing , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[60]  Pratap Tokekar,et al.  Cautious greedy strategy for bearing-based active localization: Experiments and theoretical analysis , 2012, 2012 IEEE International Conference on Robotics and Automation.

[61]  Salah Sukkarieh,et al.  A Bayesian formulation for the prioritized search of moving objects , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[62]  Mohan S. Kankanhalli,et al.  Active Learning Is Planning: Nonmyopic ε-Bayes-Optimal Active Learning of Gaussian Processes , 2014, ECML/PKDD.

[63]  Howie Choset,et al.  Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods , 2003, Int. J. Robotics Res..

[64]  Gregory D. Hager,et al.  Computational Methods for Task-directed Sensor Data Fusion and Sensor Planning , 1991, Int. J. Robotics Res..

[65]  Geoffrey A. Hollinger,et al.  Sampling-based robotic information gathering algorithms , 2014, Int. J. Robotics Res..

[66]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[67]  Joachim Denzler,et al.  Information theoretic focal length selection for real-time active 3D object tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[68]  Vijay Kumar,et al.  Cooperative air and ground surveillance , 2006, IEEE Robotics & Automation Magazine.

[69]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[71]  N. Roy,et al.  Dynamic action spaces for information gain maximization in search and exploration , 2006, 2006 American Control Conference.

[72]  S. Cowen,et al.  Underwater docking of autonomous undersea vehicles using optical terminal guidance , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[73]  George J. Pappas,et al.  Nonmyopic View Planning for Active Object Classification and Pose Estimation , 2014, IEEE Transactions on Robotics.

[74]  Wenjie Lu,et al.  An Information Potential Approach to Integrated Sensor Path Planning and Control , 2014, IEEE Transactions on Robotics.

[75]  Geoffrey A. Hollinger,et al.  Active planning for underwater inspection and the benefit of adaptivity , 2012, Int. J. Robotics Res..

[76]  M.A. MacIver,et al.  Designing future underwater vehicles: principles and mechanisms of the weakly electric fish , 2004, IEEE Journal of Oceanic Engineering.

[77]  Yiming Ye,et al.  Sensor Planning for 3D Object Search, , 1999, Comput. Vis. Image Underst..

[78]  Kian Hsiang Low,et al.  Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms , 2013, AAMAS.

[79]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[80]  I. Mezić,et al.  Metrics for ergodicity and design of ergodic dynamics for multi-agent systems , 2011 .

[81]  G. Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 1 , 2009 .

[82]  Mohan S. Kankanhalli,et al.  Nonmyopic \(\epsilon\)-Bayes-Optimal Active Learning of Gaussian Processes , 2014, ICML.