Dominance Solvability in Random Games

We study the effectiveness of iterated elimination of strictly-dominated actions in random games. We show that dominance solvability of games is vanishingly small as the number of at least one player's actions grows. Furthermore, conditional on dominance solvability, the number of iterations required to converge to Nash equilibrium grows rapidly as action sets grow. Nonetheless, when games are highly imbalanced, iterated elimination simplifies the game substantially by ruling out a sizable fraction of actions. Technically, we illustrate the usefulness of recent combinatorial methods for the analysis of general games.

[1]  J. Geanakoplos,et al.  Multimarket Oligopoly: Strategic Substitutes and Complements , 1985, Journal of Political Economy.

[2]  A. McLennan The Expected Number of Nash Equilibria of a Normal Form Game , 2005 .

[3]  S. Vajda,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[4]  Hitoshi Matsushima,et al.  Mechanism design with side payments: Individual rationality and iterative dominance , 2002, J. Econ. Theory.

[5]  Robert W. Rosenthal,et al.  A NOTE ON ABREU-MATSUSHIMA MECHANISMS , 1992 .

[6]  A. Roth,et al.  Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria , 1998 .

[7]  Rekha Srivastava,et al.  Some Generalizations of Pochhammer's Symbol and their Associated Families of Hypergeometric Functions and Hypergeometric Polynomials , 2013 .

[8]  R. Aumann,et al.  Unraveling in Guessing Games : An Experimental Study , 2007 .

[9]  Jiangtao Li,et al.  Are simple mechanisms optimal when agents are unsophisticated , 2020 .

[10]  H. Moulin Dominance Solvable Voting Schemes , 1979 .

[11]  Miguel A. Costa-Gomes,et al.  Cognition and Behavior in Normal-Form Games: An Experimental Study , 1998 .

[12]  Elena Katok,et al.  Implementation by Iterative Dominance and Backward Induction: An Experimental Comparison , 2002, J. Econ. Theory.

[13]  X. Vives Nash equilibrium with strategic complementarities , 1990 .

[14]  Cristinel Mortici,et al.  Some best approximation formulas and inequalities for the Wallis ratio , 2013, Appl. Math. Comput..

[15]  Boris Pittel,et al.  How often are two permutations comparable , 2008 .

[16]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[17]  Kevin Leyton-Brown,et al.  Level-0 meta-models for predicting human behavior in games , 2014, EC.

[18]  Dan Levin,et al.  Dominance-solvable common-value large auctions , 2011, Games Econ. Behav..

[19]  D Gale,et al.  A Theory of N-Person Games with Perfect Information. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Jonathan Weinstein The Effect of Changes in Risk Attitude on Strategic Behavior , 2016 .

[21]  Tilman Börgers,et al.  On the Dominance Solvability of Large Cournot Games , 1995 .

[22]  B. Bernheim Rationalizable Strategic Behavior , 1984 .

[23]  Shengwu Li Obviously Strategy-Proof Mechanisms , 2017 .

[24]  Tilman B oumi rgers PURE STRATEGY DOMINANCE , 1993 .

[25]  Herbert S. Wilf The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.

[26]  A. Benjamin,et al.  A Stirling Encounter with Harmonic Numbers , 2002 .

[27]  Hitoshi Matsushima,et al.  Detail-free mechanism design in twice iterative dominance: Large economies , 2007, J. Econ. Theory.

[28]  David Pearce Rationalizable Strategic Behavior and the Problem of Perfection , 1984 .

[29]  H. Srivastava,et al.  Series representations for some mathematical constants , 2006 .

[30]  Navin Kartik,et al.  Simple mechanisms and preferences for honesty , 2014, Games Econ. Behav..

[31]  Martin Sefton,et al.  Abreu–Matsushima Mechanisms: Experimental Evidence , 1996 .

[32]  Colin Camerer,et al.  A Cognitive Hierarchy Model of Games , 2004 .

[33]  W. Wallis The Theory of Voting , 2012 .

[34]  Steven J. Brams Game Theory and Politics , 2013, Dover Books on Science.

[35]  Robert L. Slonim,et al.  Learning and equilibrium as useful approximations: Accuracy of prediction on randomly selected constant sum games , 2007 .

[36]  Dömötör Pálvölgyi,et al.  Asymptotics of pattern avoidance in the Klazar set partition and permutation-tuple settings , 2019, Eur. J. Comb..

[37]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[38]  Tilman Borgers,et al.  Strategically Simple Mechanisms , 2018, Econometrica.

[39]  Ting Pei,et al.  Rationalizable strategies in random games , 2019, Games Econ. Behav..

[40]  Jason M. Shachat,et al.  Mixed Strategy Play and the Minimax Hypothesis , 2002, J. Econ. Theory.

[41]  D. Bergemann,et al.  Robust Virtual Implementation , 2009 .

[42]  Hsien-Kuei Kwang,et al.  Asymptotic Expansions for the Stirling Numbers of the First Kind , 1995, J. Comb. Theory, Ser. A.

[43]  H. Carlsson,et al.  Global Games and Equilibrium Selection , 1993 .

[44]  D. M. Topkis Equilibrium Points in Nonzero-Sum n-Person Submodular Games , 1979 .

[45]  K. P. Choi On the medians of gamma distributions and an equation of Ramanujan , 1994 .

[46]  Drew Fudenberg,et al.  Predicting and Understanding Initial Play , 2019, American Economic Review.

[47]  Martin Klazar,et al.  Counting Pattern-free Set Partitions I: A Generalization of Stirling Numbers of the Second Kind , 2000, Eur. J. Comb..

[48]  Hitoshi Matsushima,et al.  Virtual implementation in iteratively undominated strategies: complete information , 1992 .

[49]  I. Y. Powers Limiting distributions of the number of pure strategy Nash equilibria in n-person games , 1990 .