Modeling the shape hierarchy for visually guided grasping

The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP). The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e., distance from the observer to the object surface). We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. Further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

[1]  Eric T. Carlson,et al.  Medial Axis Shape Coding in Macaque Inferotemporal Cortex , 2012, Neuron.

[2]  John W. Lane,et al.  Receptive Field Properties of the Macaque Second Somatosensory Cortex: Evidence for Multiple Functional Representations , 2004, The Journal of Neuroscience.

[3]  Gregory C. DeAngelis,et al.  Behavioral / Systems / Cognitive Coding of Stereoscopic Depth Information in Visual Areas V 3 and V 3 A , 2011 .

[4]  Tomoka Naganuma,et al.  Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient , 2002, Science.

[5]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[6]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[7]  G. Rizzolatti,et al.  Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. , 2001, Brain : a journal of neurology.

[8]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[9]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Peter Janssen,et al.  Extracting 3D structure from disparity , 2006, Trends in Neurosciences.

[11]  L. Fogassi,et al.  Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. , 2004, Journal of neurophysiology.

[12]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[13]  Takashi Shimizu,et al.  Time course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis. , 2010, Journal of neurophysiology.

[14]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[15]  A. Simeone,et al.  The TINS Lecture Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis , 1999, Trends in Neurosciences.

[16]  Danica Kragic,et al.  Minimum volume bounding box decomposition for shape approximation in robot grasping , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  G. DeAngelis,et al.  Coding of Stereoscopic Depth Information in Visual Areas V3 and V3A , 2011, The Journal of Neuroscience.

[18]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[19]  Keiji Tanaka,et al.  Statistics of visual responses in primate inferotemporal cortex to object stimuli. , 2011, Journal of neurophysiology.

[20]  G. DeAngelis,et al.  A Logarithmic, Scale-Invariant Representation of Speed in Macaque Middle Temporal Area Accounts for Speed Discrimination Performance , 2005, The Journal of Neuroscience.

[21]  Jan J. Koenderink,et al.  Shape from stereo: A systematic approach using quadratic surfaces , 1993, Perception & psychophysics.

[22]  T J Sejnowski,et al.  A Theory of Geometric Constraints on Neural Activity for Natural Three-Dimensional Movement , 1999, The Journal of Neuroscience.

[23]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[25]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[26]  H. Sakata,et al.  Deficit of hand preshaping after muscimol injection in monkey parietal cortex , 1994, Neuroreport.

[27]  M. Carandini Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex , 2004, PLoS biology.

[28]  Morten H. Christiansen,et al.  A computational model , 2014 .

[29]  Pierpaolo Pani,et al.  Three-dimensional Shape Coding in Grasping Circuits: A Comparison between the Anterior Intraparietal Area and Ventral Premotor Area F5a , 2013, Journal of Cognitive Neuroscience.

[30]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[31]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[32]  D. L. Adams,et al.  Functional organization of macaque V3 for stereoscopic depth. , 2001, Journal of neurophysiology.

[33]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[34]  Song Han,et al.  On Recovering Hyperquadrics from Range Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Peter K. Allen,et al.  Grasp Planning via Decomposition Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[36]  Ari Rosenberg,et al.  The Visual Representation of 3D Object Orientation in Parietal Cortex , 2013, The Journal of Neuroscience.

[37]  Ruzena Bajcsy,et al.  Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  G. Rizzolatti,et al.  Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6aβ) , 2004, Experimental Brain Research.

[39]  L. Fogassi,et al.  Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. , 2006, Journal of neurophysiology.

[40]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Gordon Cheng,et al.  A computational model of anterior intraparietal (AIP) neurons , 2006, Neurocomputing.

[42]  Katsushi Ikeuchi,et al.  Task Oriented Vision , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Sudeep Sarkar,et al.  Multi-scale superquadric fitting for efficient shape and pose recovery of unknown objects , 2013, 2013 IEEE International Conference on Robotics and Automation.

[44]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[45]  H. Sakata,et al.  Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. , 2001, Journal of neurophysiology.

[46]  H. Sakata,et al.  Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. , 1996, Neuroreport.

[47]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[48]  K Tsutsui,et al.  Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  H. Bergman,et al.  Information processing, dimensionality reduction and reinforcement learning in the basal ganglia , 2003, Progress in Neurobiology.

[50]  Dottie M. Clower,et al.  Basal ganglia and cerebellar inputs to 'AIP'. , 2005, Cerebral cortex.

[51]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[52]  Danica Kragic,et al.  Learning a dictionary of prototypical grasp-predicting parts from grasping experience , 2013, 2013 IEEE International Conference on Robotics and Automation.

[53]  Peter Janssen,et al.  A Distinct Representation of Three-Dimensional Shape in Macaque Anterior Intraparietal Area: Fast, Metric, and Coarse , 2009, The Journal of Neuroscience.

[54]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[55]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[56]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[57]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[58]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[59]  Pierpaolo Pani,et al.  Selectivity for Three-Dimensional Shape and Grasping-Related Activity in the Macaque Ventral Premotor Cortex , 2012, The Journal of Neuroscience.

[60]  Peter Janssen,et al.  The Role of Binocular Disparity in Stereoscopic Images of Objects in the Macaque Anterior Intraparietal Area , 2013, PloS one.

[61]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[62]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[63]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[64]  H. Sakata,et al.  Functional and histological properties of caudal intraparietal area of macaque monkey , 2010, Neuroscience.

[65]  G. Orban,et al.  Three-Dimensional Shape Coding in Inferior Temporal Cortex , 2000, Neuron.

[66]  Karl F. Stock,et al.  A COMPUTATIONAL MODEL , 2011 .

[67]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[68]  Markus Vincze,et al.  Efficient 3D Object Detection by Fitting Superquadrics to Range Image Data for Robot's Object Manipulation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[69]  Guglielmo Tamburrini,et al.  Perceiving affordances: A computational investigation of grasping affordances , 2011, Cognitive Systems Research.