How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback

[1]  John M. Ennis,et al.  A neurobiological theory of automaticity in perceptual categorization. , 2007, Psychological review.

[2]  M. Riesenhuber,et al.  Categorization Training Results in Shape- and Category-Selective Human Neural Plasticity , 2007, Neuron.

[3]  Carol A. Seger,et al.  Dissociation between Striatal Regions while Learning to Categorize via Feedback and via Observation , 2007, Journal of Cognitive Neuroscience.

[4]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[5]  Michael J. Frank,et al.  Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making , 2006, Neural Networks.

[6]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[7]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[8]  S. Quartz,et al.  Neural Differentiation of Expected Reward and Risk in Human Subcortical Structures , 2006, Neuron.

[9]  Russell A Poldrack,et al.  Modulation of competing memory systems by distraction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[11]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[12]  Xiao-Jing Wang,et al.  Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks , 2006, Nature Neuroscience.

[13]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[14]  James L. McClelland,et al.  Performance Feedback Drives Caudate Activation in a Phonological Learning Task , 2006, Journal of Cognitive Neuroscience.

[15]  K. Berman,et al.  Cerebral Cortex doi:10.1093/cercor/bhj004 Neural Coding of Distinct Statistical Properties of Reward Information in Humans , 2005 .

[16]  Ziv M. Williams,et al.  Selective enhancement of associative learning by microstimulation of the anterior caudate , 2006, Nature Neuroscience.

[17]  R. Poldrack,et al.  Ventral–striatal/nucleus–accumbens sensitivity to prediction errors during classification learning , 2006, Human brain mapping.

[18]  J. Hirsch,et al.  A Neural Representation of Categorization Uncertainty in the Human Brain , 2006, Neuron.

[19]  M. Kawato,et al.  Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. , 2006, Journal of neurophysiology.

[20]  L. Tremblay,et al.  Motor control in basal ganglia circuits using fMRI and brain atlas approaches. , 2006, Cerebral cortex.

[21]  W. T. Maddox,et al.  Neural correlates of rule-based and information-integration visual category learning. , 2006, Cerebral cortex.

[22]  John McDowall,et al.  When artificial grammar acquisition in Parkinson's disease is impaired: The case of learning via trial-by-trial feedback , 2006, Brain Research.

[23]  Carol A. Seger,et al.  Dynamics of frontal, striatal, and hippocampal systems during rule learning. , 2005, Cerebral cortex.

[24]  J. Glowinski,et al.  Bidirectional Activity-Dependent Plasticity at Corticostriatal Synapses , 2005, The Journal of Neuroscience.

[25]  A. Graybiel,et al.  Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories , 2005, Nature.

[26]  Jeffrey C. Cooper,et al.  Functional magnetic resonance imaging of reward prediction , 2005, Current opinion in neurology.

[27]  Sabrina M. Tom,et al.  The Neural Correlates of Motor Skill Automaticity , 2005, The Journal of Neuroscience.

[28]  Carol A. Seger,et al.  The Roles of the Caudate Nucleus in Human Classification Learning , 2005, The Journal of Neuroscience.

[29]  A. Faure,et al.  Lesion to the Nigrostriatal Dopamine System Disrupts Stimulus-Response Habit Formation , 2005, The Journal of Neuroscience.

[30]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[31]  W. T. Maddox,et al.  Cortical and subcortical brain regions involved in rule-based category learning , 2005, Neuroreport.

[32]  S. Inati,et al.  An fMRI study of reward-related probability learning , 2005, NeuroImage.

[33]  Corey J. Bohil,et al.  Evidence for a procedural-learning-based system in perceptual category learning , 2004, Psychonomic bulletin & review.

[34]  M. Delgado,et al.  Motivation-dependent responses in the human caudate nucleus. , 2004, Cerebral cortex.

[35]  M. Gluck,et al.  Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. , 2004, Journal of neurophysiology.

[36]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[37]  J. Wickens,et al.  Computational models of the basal ganglia: from robots to membranes , 2004, Trends in Neurosciences.

[38]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[39]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[40]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[41]  M. Gluck,et al.  Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. , 2004, Brain : a journal of neurology.

[42]  K. Doya,et al.  A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task , 2004, The Journal of Neuroscience.

[43]  T. Robbins,et al.  Differential Responses in Human Striatum and Prefrontal Cortex to Changes in Object and Rule Relevance , 2004, The Journal of Neuroscience.

[44]  S. Wise,et al.  Comparison of learning‐related neuronal activity in the dorsal premotor cortex and striatum , 2004, The European journal of neuroscience.

[45]  M. Delgado,et al.  Modulation of Caudate Activity by Action Contingency , 2004, Neuron.

[46]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[47]  H. Bergman,et al.  Information processing, dimensionality reduction and reinforcement learning in the basal ganglia , 2003, Progress in Neurobiology.

[48]  Shawn W. Ell,et al.  Procedural learning in perceptual categorization , 2003, Memory & cognition.

[49]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[50]  Hagai Bergman,et al.  Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia , 2003, Journal of Physiology-Paris.

[51]  Corey J. Bohil,et al.  Delayed feedback effects on rule-based and information-integration category learning. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[52]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[53]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[54]  A. Nambu,et al.  Organization of corticostriatal motor inputs in monkey putamen. , 2002, Journal of neurophysiology.

[55]  R. Passingham,et al.  Changes of cortico-striatal effective connectivity during visuomotor learning. , 2002, Cerebral cortex.

[56]  Paul J Reber,et al.  Comparing the brain areas supporting nondeclarative categorization and recognition memory. , 2002, Brain research. Cognitive brain research.

[57]  O. Hikosaka,et al.  Differential activation of monkey striatal neurons in the early and late stages of procedural learning , 2002, Experimental Brain Research.

[58]  Corey J Bohil,et al.  Observational versus feedback training in rule-based and information-integration category learning , 2002, Memory & cognition.

[59]  Carol A. Seger,et al.  Striatal activity in concept learning , 2002, Cognitive, affective & behavioral neuroscience.

[60]  Patrick Dupont,et al.  Human Brain Regions Involved in Visual Categorization , 2002, NeuroImage.

[61]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[62]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[63]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[64]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[65]  M. Gluck,et al.  Interactive memory systems in the human brain , 2001, Nature.

[66]  M. Petrides,et al.  Wisconsin Card Sorting Revisited: Distinct Neural Circuits Participating in Different Stages of the Task Identified by Event-Related Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[67]  K. Doya,et al.  Parallel Cortico-Basal Ganglia Mechanisms for Acquisition and Execution of Visuomotor SequencesA Computational Approach , 2001, Journal of Cognitive Neuroscience.

[68]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[69]  M. Mishkin,et al.  Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[70]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[71]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[72]  S. Wise,et al.  Arbitrary associations between antecedents and actions , 2000, Trends in Neurosciences.

[73]  M. Merello,et al.  [Functional anatomy of the basal ganglia]. , 2000, Revista de neurologia.

[74]  L. Squire,et al.  Contrasting Effects on Discrimination Learning after Hippocampal Lesions and Conjoint Hippocampal–Caudate Lesions in Monkeys , 2000, The Journal of Neuroscience.

[75]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[76]  Carol A. Seger,et al.  Striatal activation during acquisition of a cognitive skill. , 1999, Neuropsychology.

[77]  F. Ashby,et al.  On the nature of implicit categorization , 1999, Psychonomic bulletin & review.

[78]  T. Robbins,et al.  Cognitive functions and corticostriatal circuits: insights from Huntington's disease , 1998, Trends in Cognitive Sciences.

[79]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[80]  Gregory Ashby,et al.  A neuropsychological theory of multiple systems in category learning. , 1998, Psychological review.

[81]  L R Squire,et al.  A reexamination of the concurrent discrimination learning task: the importance of anterior inferotemporal cortex, area TE. , 1998, Behavioral neuroscience.

[82]  K Cheng,et al.  Organization of Corticostriatal and Corticoamygdalar Projections Arising from the Anterior Inferotemporal Area TE of the Macaque Monkey: A Phaseolus vulgaris Leucoagglutinin Study , 1997, The Journal of Neuroscience.

[83]  P. Goldman-Rakic,et al.  Differential Activation of the Caudate Nucleus in Primates Performing Spatial and Nonspatial Working Memory Tasks , 1997, The Journal of Neuroscience.

[84]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[85]  P. Strick,et al.  The temporal lobe is a target of output from the basal ganglia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Mishkin,et al.  Responses of cells in the tail of the caudate nucleus during visual discrimination learning. , 1995, Journal of neurophysiology.

[87]  D. Gaffan,et al.  Visual Learning for an Auditory Secondary Reinforcer by Macaques is Intact after Uncinate Fascicle Section: Indirect Evidence for the Involvement of the Corpus Striatum , 1995, The European journal of neuroscience.

[88]  S P Wise,et al.  Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. , 1995, Cerebral cortex.

[89]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[90]  D. Joel,et al.  The organization of the basal ganglia-thalamocortical circuits: Open interconnected rather than closed segregated , 1994, Neuroscience.

[91]  E. Rolls Neurophysiology and cognitive functions of the striatum. , 1994, Revue neurologique.

[92]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[94]  A. Nambu,et al.  The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys , 1993, Brain Research.

[95]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  B. V. Updyke,et al.  Organization of visual corticostriatal projections in the cat, with observations on visual projections to claustrum and amygdala , 1993, The Journal of comparative neurology.

[97]  Leslie G. Ungerleider,et al.  Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido‐nigral complex in the monkey , 1990, The Journal of comparative neurology.

[98]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[99]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  E. T. Rolls,et al.  Responses of striatal neurons in the behaving monkey. 2. Visual processing in the caudal neostriatum , 1984, Brain Research.

[101]  R. O’Reilly,et al.  Separate neural substrates for skill learning and performance in the ventral and dorsal striatum , 2007, Nature Neuroscience.

[102]  R. Poldrack,et al.  Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus , 2006, The Journal of Neuroscience.

[103]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[104]  David L. Faigman,et al.  Human category learning. , 2005, Annual review of psychology.

[105]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[106]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[107]  L. Squire,et al.  A reexamination of the concurrent discrimination learning task , 1998 .

[108]  D. Pandya,et al.  Corticostriatal connections of extrastriate visual areas in rhesus monkeys. , 1995, The Journal of comparative neurology.

[109]  A. Graybiel,et al.  Role of Basal Ganglia in Sensory Motor Association Learning , 1995 .

[110]  A. Graybiel,et al.  Functions of the Cortico-Basal Ganglia Loop , 1995, Springer Japan.

[111]  R. Passingham The frontal lobes and voluntary action , 1993 .

[112]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.