Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning

Summary Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC) suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation.

[1]  Hannah Monyer,et al.  Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex , 2016, Neuron.

[2]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[3]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.

[4]  Annie Vogel-Ciernia,et al.  Examining Object Location and Object Recognition Memory in Mice , 2014, Current protocols in neuroscience.

[5]  Thomas J. Wills,et al.  Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse , 2016, Current Biology.

[6]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[7]  Paul F. M. J. Verschure,et al.  A Model of Grid Cells Based on a Twisted Torus Topology , 2007, Int. J. Neural Syst..

[8]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[9]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[10]  Nachum Ulanovsky,et al.  Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation , 2015, Nature Reviews Neuroscience.

[11]  Surya Ganguli,et al.  A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex , 2017, Neuron.

[12]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[13]  Lacey J. Kitch,et al.  Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells , 2015, Proceedings of the National Academy of Sciences.

[14]  T. Collett,et al.  Spatial Memory in Insect Navigation , 2013, Current Biology.

[15]  Michael E Hasselmo,et al.  Modelling effects on grid cells of sensory input during self‐motion , 2016, The Journal of physiology.

[16]  M. Moser,et al.  Spatial Memory in the Rat Requires the Dorsolateral Band of the Entorhinal Cortex , 2005, Neuron.

[17]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[18]  R. Wehner,et al.  The Ant Odometer: Stepping on Stilts and Stumps , 2006, Science.

[19]  John A. King,et al.  How vision and movement combine in the hippocampal place code , 2012, Proceedings of the National Academy of Sciences.

[20]  Sophie Schneiderbauer,et al.  Inhibitory Gradient along the Dorsoventral Axis in the Medial Entorhinal Cortex , 2013, Neuron.

[21]  Ila Fiete,et al.  Grid cells generate an analog error-correcting code for singularly precise neural computation , 2011, Nature Neuroscience.

[22]  Matthew F. Nolan,et al.  Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex , 2015, Neuron.

[23]  E. Save,et al.  Distinct roles of medial and lateral entorhinal cortex in spatial cognition. , 2013, Cerebral cortex.

[24]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[25]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[26]  Yoram Burakyy,et al.  Accurate Path Integration in Continuous Attractor Network Models of Grid Cells , 2009 .

[27]  F. Helmchen,et al.  Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex , 2016, Nature Neuroscience.

[28]  M. Hasselmo,et al.  Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing , 2010, The Journal of Neuroscience.

[29]  Lacey J. Kitch,et al.  Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory , 2015, Neuron.

[30]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[31]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[32]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[33]  Martin Stemmler,et al.  Optimal Population Codes for Space: Grid Cells Outperform Place Cells , 2012, Neural Computation.

[34]  Kaori Takehara-Nishiuchi,et al.  Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies , 2014, Neurobiology of Learning and Memory.

[35]  P. Coleman,et al.  Neurons of origin of the perforant path , 1981, Experimental Neurology.

[36]  E. Save,et al.  Medial entorhinal cortex and medial septum contribute to self-motion-based linear distance estimation , 2017, Brain Structure and Function.

[37]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[38]  Neil Burgess,et al.  Models of place and grid cell firing and theta rhythmicity , 2011, Current Opinion in Neurobiology.

[39]  Larry R Squire,et al.  Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. , 2014, Cell reports.

[40]  Allen Cheung,et al.  Finding the Way with a Noisy Brain , 2010, PLoS Comput. Biol..

[41]  Olga Kornienko,et al.  Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex , 2016, eLife.

[42]  Mark C. W. van Rossum,et al.  Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks , 2015, eLife.

[43]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[44]  Jenny R. Köppen,et al.  Limbic system structures differentially contribute to exploratory trip organization of the rat , 2013, Hippocampus.

[45]  Janet Wiles,et al.  Solving Navigational Uncertainty Using Grid Cells on Robots , 2010, PLoS Comput. Biol..

[46]  C. Rueden,et al.  Metadata matters: access to image data in the real world , 2010, The Journal of cell biology.

[47]  Alexander Mathis,et al.  Connecting multiple spatial scales to decode the population activity of grid cells , 2015, Science Advances.

[48]  Hugh Pastoll,et al.  Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex , 2015, Neuron.

[49]  Michael E. Hasselmo,et al.  Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex , 2015, PLoS Comput. Biol..

[50]  M. V. Rossum,et al.  Feedback Inhibition Enables Theta-Nested Gamma Oscillations and Grid Firing Fields , 2013, Neuron.

[51]  Neil Burgess,et al.  Using Grid Cells for Navigation , 2015, Neuron.

[52]  Mark P. Brandon,et al.  During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run , 2015, Neuron.

[53]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[54]  Eric A. Zilli,et al.  Models of Grid Cell Spatial Firing Published 2005–2011 , 2012, Front. Neural Circuits.

[55]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[56]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[57]  Inah Lee,et al.  Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior , 2017, eLife.

[58]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[59]  William Wisden,et al.  Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory , 2011, Nature Neuroscience.

[60]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[61]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[62]  Allen Cheung Probabilistic Learning by Rodent Grid Cells , 2016, PLoS Comput. Biol..

[63]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.