Neurocomputational models of basal ganglia function in learning, memory and choice

[1]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[2]  Q. Yao,et al.  Author ' s personal copy 154 , 2010 .

[3]  J. Bogousslavsky,et al.  Tenth Meeting of the European Neurological Society 18–22 June, 2000, Jerusalem, Israël , 2000, Journal of Neurology.

[4]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[5]  Thomas V. Wiecki,et al.  A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal , 2009, Psychopharmacology.

[6]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[7]  Paul Greengard,et al.  A phosphatase cascade by which rewarding stimuli control nucleosomal response , 2008, Nature.

[8]  Michael J. Frank,et al.  Learning to Avoid in Older Age , 2008 .

[9]  P. Seeman Dopamine D2High receptors on intact cells , 2008, Synapse.

[10]  E T Bullmore,et al.  Substantia nigra/ventral tegmental reward prediction error disruption in psychosis , 2008, Molecular Psychiatry.

[11]  Michael X. Cohen,et al.  Covariance‐based subdivision of the human striatum using T1‐weighted MRI , 2008, The European journal of neuroscience.

[12]  Samuel M. McClure,et al.  BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area , 2008, Science.

[13]  M. Reuter,et al.  Genetically Determined Differences in Learning from Errors , 2007, Science.

[14]  J. O'Doherty,et al.  Lights, Camembert, Action! The Role of Human Orbitofrontal Cortex in Encoding Stimuli, Rewards, and Choices , 2007, Annals of the New York Academy of Sciences.

[15]  Michael J. Frank,et al.  Hold Your Horses: Impulsivity, Deep Brain Stimulation, and Medication in Parkinsonism , 2007, Science.

[16]  N. Daw,et al.  Reinforcement Learning Signals in the Human Striatum Distinguish Learners from Nonlearners during Reward-Based Decision Making , 2007, The Journal of Neuroscience.

[17]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[18]  Michael J. Frank,et al.  Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning , 2007, Proceedings of the National Academy of Sciences.

[19]  P. Glimcher,et al.  Statistics of midbrain dopamine neuron spike trains in the awake primate. , 2007, Journal of neurophysiology.

[20]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[21]  Jeffrey B. O’Brien,et al.  The effects of positive versus negative feedback on information-integration category learning , 2007, Perception & psychophysics.

[22]  Michael J. Frank,et al.  Testing Computational Models of Dopamine and Noradrenaline Dysfunction in Attention Deficit/Hyperactivity Disorder , 2007, Neuropsychopharmacology.

[23]  M. Nicolelis,et al.  Dopamine levels modulate the updating of tastant values , 2007, Genes, brain, and behavior.

[24]  J. Gläscher,et al.  Gene–gene interaction associated with neural reward sensitivity , 2007, Proceedings of the National Academy of Sciences.

[25]  P. Dayan,et al.  Differential Encoding of Losses and Gains in the Human Striatum , 2007, The Journal of Neuroscience.

[26]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[27]  J. Wickens,et al.  Striatal Contributions to Reward and Decision Making , 2007 .

[28]  Timothy Edward John Behrens,et al.  Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI , 2007, The Journal of Neuroscience.

[29]  Andreas Meyer-Lindenberg,et al.  Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. , 2007, The Journal of clinical investigation.

[30]  Michael X. Cohen,et al.  Individual Differences and the Neural Representations of Reward Expectation and Reward Prediction Error , 2022 .

[31]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[32]  T. Robbins,et al.  Bilateral high‐frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats , 2007, The European journal of neuroscience.

[33]  Kevin N. Gurney,et al.  The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions , 2007, Neural Computation.

[34]  Thomas E. Hazy,et al.  PVLV: the primary value and learned value Pavlovian learning algorithm. , 2007, Behavioral neuroscience.

[35]  Michael X. Cohen,et al.  Behavioral / Systems / Cognitive Reinforcement Learning Signals Predict Future Decisions , 2007 .

[36]  J. Wickens,et al.  Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. , 2007, Annals of the New York Academy of Sciences.

[37]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[38]  R. O’Reilly,et al.  Separate neural substrates for skill learning and performance in the ventral and dorsal striatum , 2007, Nature Neuroscience.

[39]  P. Dayan,et al.  Tonic dopamine: opportunity costs and the control of response vigor , 2007, Psychopharmacology.

[40]  R. Cools Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson's disease , 2006, Neuroscience & Biobehavioral Reviews.

[41]  M. D’Esposito,et al.  Reversal learning in Parkinson's disease depends on medication status and outcome valence , 2006, Neuropsychologia.

[42]  M. Gluck,et al.  l-dopa impairs learning, but spares generalization, in Parkinson's disease , 2006, Neuropsychologia.

[43]  K. Gurney,et al.  A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia , 2006, The Journal of Neuroscience.

[44]  Yen F. Tai,et al.  Clinical correlates of levodopa-induced dopamine release in Parkinson disease , 2006, Neurology.

[45]  Michael J. Frank,et al.  Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making , 2006, Neural Networks.

[46]  Mitsuo Kawato,et al.  Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning , 2006, Neural Networks.

[47]  Rudolf N. Cardinal,et al.  Neural systems implicated in delayed and probabilistic reinforcement , 2006, Neural Networks.

[48]  Jeanette Kotaleski,et al.  Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation , 2006, PLoS Comput. Biol..

[49]  J. O'Doherty,et al.  The Role of the Ventromedial Prefrontal Cortex in Abstract State-Based Inference during Decision Making in Humans , 2006, The Journal of Neuroscience.

[50]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[51]  Michael J. Frank,et al.  A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. , 2006, Behavioral neuroscience.

[52]  Kae Nakamura,et al.  Role of Dopamine in the Primate Caudate Nucleus in Reward Modulation of Saccades , 2006, The Journal of Neuroscience.

[53]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.

[54]  C. Geula,et al.  Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons , 2006, Nature Genetics.

[55]  M. Frank,et al.  Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. , 2006, Psychological review.

[56]  S. Cragg Meaningful silences: how dopamine listens to the ACh pause , 2006, Trends in Neurosciences.

[57]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[58]  E. Abercrombie,et al.  Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum , 2005, Neuroscience.

[59]  Jonathan D. Cohen,et al.  An exploration-exploitation model based on norepinepherine and dopamine activity , 2005, NIPS.

[60]  P. Dayan,et al.  Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control , 2005, Nature Neuroscience.

[61]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[62]  J. Feldon,et al.  Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive‐choice behaviour and salience learning in rats , 2005, The European journal of neuroscience.

[63]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[64]  L. Finkel,et al.  NMDA/AMPA Ratio Impacts State Transitions and Entrainment to Oscillations in a Computational Model of the Nucleus Accumbens Medium Spiny Projection Neuron , 2005, The Journal of Neuroscience.

[65]  D. Barraclough,et al.  Learning and decision making in monkeys during a rock-paper-scissors game. , 2005, Brain research. Cognitive brain research.

[66]  D. Hansel,et al.  Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. , 2005, Brain : a journal of neurology.

[67]  Michael J. Frank,et al.  Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases , 2005, Neuron.

[68]  A. Parent,et al.  The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[70]  Xiao-bin Wang,et al.  Differential modulation of anterior cingulate cortical activity by afferents from ventral tegmental area and mediodorsal thalamus , 2005, The European journal of neuroscience.

[71]  B. Madras,et al.  The Dopamine Transporter and Attention-Deficit/Hyperactivity Disorder , 2005, Biological Psychiatry.

[72]  C. Ranganath,et al.  Behavioral and neural predictors of upcoming decisions , 2005, Cognitive, affective & behavioral neuroscience.

[73]  James C. Houk,et al.  Agents of the mind , 2005, Biological Cybernetics.

[74]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[75]  J. Obeso,et al.  Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi‐ and contralateral projections , 2005, The Journal of comparative neurology.

[76]  M. Morelli,et al.  Different responsiveness of striatonigral and striatopallidal neurons to L‐DOPA after a subchronic intermittent L‐DOPA treatment , 2005, The European journal of neuroscience.

[77]  Joshua W. Brown,et al.  Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex , 2005, Science.

[78]  Florentin Wörgötter,et al.  Temporal Sequence Learning, Prediction, and Control: A Review of Different Models and Their Relation to Biological Mechanisms , 2005, Neural Computation.

[79]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[80]  C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo , 2005, Molecular Psychiatry.

[81]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[82]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[83]  D. Barraclough,et al.  Reinforcement learning and decision making in monkeys during a competitive game. , 2004, Brain research. Cognitive brain research.

[84]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[85]  Ewelina Knapska,et al.  A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? , 2004, Progress in Neurobiology.

[86]  Tomifusa Kuboki,et al.  Error-related negativity reflects detection of negative reward prediction error , 2004, Neuroreport.

[87]  R. E. Passingham,et al.  Prediction error for free monetary reward in the human prefrontal cortex , 2004, NeuroImage.

[88]  D. Weinberger,et al.  Genes, dopamine and cortical signal-to-noise ratio in schizophrenia , 2004, Trends in Neurosciences.

[89]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[90]  A. Reiner,et al.  Evidence for Differential Cortical Input to Direct Pathway versus Indirect Pathway Striatal Projection Neurons in Rats , 2004, The Journal of Neuroscience.

[91]  P. Calabresi,et al.  Chronic Haloperidol Promotes Corticostriatal Long-Term Potentiation by Targeting Dopamine D2L Receptors , 2004, The Journal of Neuroscience.

[92]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[93]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[94]  M. Gluck,et al.  Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. , 2004, Journal of neurophysiology.

[95]  P. Brown,et al.  Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. , 2004, Journal of neurophysiology.

[96]  J. Wickens,et al.  Computational models of the basal ganglia: from robots to membranes , 2004, Trends in Neurosciences.

[97]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[98]  Clay B. Holroyd,et al.  Reinforcement-related brain potentials from medial frontal cortex: origins and functional significance , 2004, Neuroscience & Biobehavioral Reviews.

[99]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[100]  Paul J. Harrison,et al.  Catechol-O-Methyltransferase Inhibition Improves Set-Shifting Performance and Elevates Stimulated Dopamine Release in the Rat Prefrontal Cortex , 2004, The Journal of Neuroscience.

[101]  Peter Dayan,et al.  Temporal difference models describe higher-order learning in humans , 2004, Nature.

[102]  Charles J. Wilson,et al.  A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. , 2004, Journal of neurophysiology.

[103]  Stephen Grossberg,et al.  How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades , 2004, Neural Networks.

[104]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[105]  M. Gluck,et al.  Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. , 2004, Brain : a journal of neurology.

[106]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[107]  P. Garris,et al.  Real‐time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing , 2004, Journal of neurochemistry.

[108]  Hui Zhang,et al.  Real‐time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing , 2003 .

[109]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[110]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[111]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[112]  J. Schall Neural correlates of decision processes: neural and mental chronometry , 2003, Current Opinion in Neurobiology.

[113]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[114]  T. Robbins,et al.  Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function , 2002, Behavioural Brain Research.

[115]  J. Rinne,et al.  Functional imaging studies of dopamine system and cognition in normal aging and Parkinson's disease , 2002, Neuroscience & Biobehavioral Reviews.

[116]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[117]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[118]  J. Gold,et al.  Banburismus and the Brain Decoding the Relationship between Sensory Stimuli, Decisions, and Reward , 2002, Neuron.

[119]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[120]  Yi Dai,et al.  Phosphorylation of Extracellular Signal-Regulated Kinase in Primary Afferent Neurons by Noxious Stimuli and Its Involvement in Peripheral Sensitization , 2002, The Journal of Neuroscience.

[121]  A. Nambu,et al.  Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway , 2002, Neuroscience Research.

[122]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[123]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[124]  Sham M. Kakade,et al.  Opponent interactions between serotonin and dopamine , 2002, Neural Networks.

[125]  B. Everitt,et al.  Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex , 2002, Neuroscience & Biobehavioral Reviews.

[126]  T. Robbins,et al.  Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. , 2001, Cerebral cortex.

[127]  T. Robbins,et al.  Mechanisms of cognitive set flexibility in Parkinson's disease. , 2001, Brain : a journal of neurology.

[128]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[129]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[130]  P. Calabresi,et al.  Dopaminergic control of synaptic plasticity in the dorsal striatum , 2001, The European journal of neuroscience.

[131]  Yu-Shin Ding,et al.  Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain , 2001, The Journal of Neuroscience.

[132]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[133]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[134]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[135]  P. Greengard,et al.  Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity , 2000, The Journal of Neuroscience.

[136]  S. Smith‐Roe,et al.  Coincident Activation of NMDA and Dopamine D1Receptors within the Nucleus Accumbens Core Is Required for Appetitive Instrumental Learning , 2000, The Journal of Neuroscience.

[137]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[138]  A. Parent,et al.  The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat , 2000, Neuroscience Research.

[139]  K. Nakano,et al.  Neural circuits and functional organization of the striatum , 2000, Journal of Neurology.

[140]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[141]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[142]  T. Robbins,et al.  Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication , 2000, Neuropsychologia.

[143]  C. Wilson,et al.  Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.

[144]  R. Dixon,et al.  Age-related cognitive deficits mediated by changes in the striatal dopamine system. , 2000, The American journal of psychiatry.

[145]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[146]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[147]  Hans Forssberg,et al.  Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons , 2000, Nature Neuroscience.

[148]  S. Hyman,et al.  Addiction, Dopamine, and the Molecular Mechanisms of Memory , 2000, Neuron.

[149]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[150]  B. Bloch,et al.  Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum , 2000, The Journal of comparative neurology.

[151]  T. Robbins,et al.  The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. , 2000, Behavioral neuroscience.

[152]  M. Hallett,et al.  Mechanism of action of deep brain stimulation. , 2000, Neurology.

[153]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[154]  A. Graybiel,et al.  Cortically driven Fos induction in the striatum is amplified by local dopamine D2‐class receptor blockade , 1999, The European journal of neuroscience.

[155]  P. Calabresi,et al.  Permissive role of interneurons in corticostriatal synaptic plasticity , 1999, Brain Research Reviews.

[156]  Joshua W. Brown,et al.  How the Basal Ganglia Use Parallel Excitatory and Inhibitory Learning Pathways to Selectively Respond to Unexpected Rewarding Cues , 1999, The Journal of Neuroscience.

[157]  W. Schultz,et al.  Learning of sequential movements by neural network model with dopamine-like reinforcement signal , 1998, Experimental Brain Research.

[158]  A. Graybiel,et al.  Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[159]  P. Calabresi,et al.  Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum , 1997, Neuroscience & Biobehavioral Reviews.

[160]  A. Levey,et al.  Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons , 1997, Synapse.

[161]  G F Koob,et al.  Drug abuse: hedonic homeostatic dysregulation. , 1997, Science.

[162]  T. Robbins,et al.  Bilateral Lesions of the Subthalamic Nucleus Induce Multiple Deficits in an Attentional Task in Rats , 1997, The European journal of neuroscience.

[163]  F. Gonon Prolonged and Extrasynaptic Excitatory Action of Dopamine Mediated by D1 Receptors in the Rat Striatum In Vivo , 1997, The Journal of Neuroscience.

[164]  H. Parthasarathy,et al.  Local Release of GABAergic Inhibition in the Motor Cortex Induces Immediate-Early Gene Expression in Indirect Pathway Neurons of the Striatum , 1997, The Journal of Neuroscience.

[165]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[166]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[167]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[168]  D. Surmeier,et al.  Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons , 1996, The Journal of Neuroscience.

[169]  S. Charpier,et al.  The lamellar organization of the rat substantia nigra pars reticulata: Segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections , 1996, Neuroscience.

[170]  B. Långström,et al.  Levodopa‐induced changes in synaptic dopamine in patients with Parkinson's disease as measured by [11C]raclopride displacement and PET , 1996, Neurology.

[171]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[172]  Charles J. Wilson,et al.  Chapter II The basal ganglia , 1996 .

[173]  K. Chergui,et al.  Uptake of Dopamine Released by Impulse Flow in the Rat Mesolimbic and Striatal Systems In Vivo , 1995, Journal of neurochemistry.

[174]  C. Gerfen,et al.  D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  A. Grace,et al.  Activation of dopamine cell firing by repeated L-DOPA administration to dopamine-depleted rats: its potential role in mediating the therapeutic response to L-DOPA treatment , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[176]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[177]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[178]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[179]  C. Gerfen,et al.  Neostriatal dopamine receptors , 1994, Trends in Neurosciences.

[180]  H. Bergman,et al.  The primate subthalamic nucleus. I. Functional properties in intact animals. , 1994, Journal of neurophysiology.

[181]  C. Koch,et al.  Linearized models of calcium dynamics: formal equivalence to the cable equation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[182]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[183]  C. Gerfen,et al.  NEOSTRIATAL DOPAMINE RECEPTORS. REPLY , 1994 .

[184]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[185]  M. Mouroux,et al.  Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. , 1993, Neuroreport.

[186]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[187]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[188]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[189]  C. Wilson,et al.  Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[190]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[191]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[192]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[193]  E. Richfield,et al.  Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system , 1989, Neuroscience.

[194]  J. Saint-Cyr,et al.  Procedural learning and neostriatal dysfunction in man. , 1988, Brain : a journal of neurology.

[195]  R. M. Wightman,et al.  Real-time characterization of dopamine overflow and uptake in the rat striatum , 1988, Neuroscience.

[196]  Werner G. Kuhr,et al.  The effect of l-DOPA on in vivo dopamine release from nigrostriatal bundle neurons , 1988, Brain Research.

[197]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[198]  J. Féger,et al.  Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: A retrograde fluorescence double-labelling study , 1984, Neuroscience Letters.

[199]  P. Greengard,et al.  DARPP-32, a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[200]  Paul Greengard,et al.  A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions , 1983, Nature.

[201]  W. Brown Animal Intelligence: Experimental Studies , 1912, Nature.