Robotic Perception of Transparent Objects: A Review

Transparent object perception is a rapidly developing research problem in artificial intelligence. The ability to perceive transparent objects enables robots to achieve higher levels of autonomy, unlocking new applications in various industries such as healthcare, services and manufacturing. Despite numerous datasets and perception methods being proposed in recent years, there is still a lack of in-depth understanding of these methods and the challenges in this field. To address this gap, this article provides a comprehensive survey of the platforms and recent advances for robotic perception of transparent objects. We highlight the main challenges and propose future directions of various transparent object perception tasks, i.e., segmentation, reconstruction, and pose estimation. We also discuss the limitations of existing datasets in diversity and complexity, and the benefits of employing multi-modal sensors, such as RGB-D cameras, thermal cameras, and polarised imaging, for transparent object perception. Furthermore, we identify perception challenges in complex and dynamic environments, as well as for objects with changeable geometries. Finally, we provide an interactive online platform to navigate each reference: \url{https://sites.google.com/view/transperception}.

[1]  Alán Aspuru-Guzik,et al.  MVTrans: Multi-View Perception of Transparent Objects , 2023, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Shan Luo,et al.  Where Shall I Touch? Vision-Guided Tactile Poking for Transparent Object Grasping , 2022, IEEE/ASME Transactions on Mechatronics.

[3]  Yiming Qian,et al.  Glass Segmentation With RGB-Thermal Image Pairs , 2022, IEEE Transactions on Image Processing.

[4]  P. Abbeel,et al.  StereoPose: Category-Level 6D Transparent Object Pose Estimation from Stereo Images via Back-View NOCS , 2022, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[5]  M. Inami,et al.  Flexel: A Modular Floor Interface for Room-Scale Tactile Sensing , 2022, UIST.

[6]  Jiazhao Zhang,et al.  GraspNeRF: Multiview-based 6-DoF Grasp Detection for Transparent and Specular Objects Using Generalizable NeRF , 2022, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Dongxu Li,et al.  TODE-Trans: Transparent Object Depth Estimation with Transformer , 2022, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[8]  O. C. Jenkins,et al.  TransNet: Category-Level Transparent Object Pose Estimation , 2022, ECCV Workshops.

[9]  Qiwei Li,et al.  Domain Randomization-Enhanced Depth Simulation and Restoration for Perceiving and Grasping Specular and Transparent Objects , 2022, ECCV.

[10]  Nam Nguyen,et al.  CSNAS: Contrastive Self-Supervised Learning Neural Architecture Search Via Sequential Model-Based Optimization , 2022, IEEE Transactions on Artificial Intelligence.

[11]  Shan Luo,et al.  A4T: Hierarchical Affordance Detection for Transparent Objects Depth Reconstruction and Manipulation , 2022, IEEE Robotics and Automation Letters.

[12]  Song-Chun Zhu,et al.  VRKitchen2.0-IndoorKit: A Tutorial for Augmented Indoor Scene Building in Omniverse , 2022, ArXiv.

[13]  Rynson W. H. Lau,et al.  Depth-aware Glass Surface Detection with Cross-modal Context Mining , 2022, ArXiv.

[14]  Felix Heide,et al.  Glass Segmentation using Intensity and Spectral Polarization Cues , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Yitong Li,et al.  PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation with Photometrically Challenging Objects , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yuki M. Asano,et al.  Self-Supervised Learning of Object Parts for Semantic Segmentation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Xin Yang,et al.  Progressive Glass Segmentation , 2022, IEEE Transactions on Image Processing.

[18]  Hao Li,et al.  EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Bin Fang,et al.  Multimode fusion perception for transparent glass recognition , 2022, Ind. Robot.

[20]  O. C. Jenkins,et al.  ClearPose: Large-scale Transparent Object Dataset and Benchmark , 2022, ECCV.

[21]  David Held,et al.  Self-supervised Transparent Liquid Segmentation for Robotic Pouring , 2022, 2022 International Conference on Robotics and Automation (ICRA).

[22]  O. C. Jenkins,et al.  ProgressLabeller: Visual Data Stream Annotation for Training Object-Centric 3D Perception , 2022, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Cewu Lu,et al.  TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth Completion and A Grasping Baseline , 2022, IEEE Robotics and Automation Letters.

[24]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[25]  Yitong Li,et al.  Polarimetric Pose Prediction , 2021, ECCV.

[26]  A. Voynov,et al.  Label-Efficient Semantic Segmentation with Diffusion Models , 2021, ICLR.

[27]  Guoping Wang,et al.  6D-ViT: Category-Level 6D Object Pose Estimation via Transformer-Based Instance Representation Learning , 2021, IEEE Transactions on Image Processing.

[28]  Rainer Stiefelhagen,et al.  Trans4Trans: Efficient Transformer for Transparent Object and Semantic Scene Segmentation in Real-World Navigation Assistance , 2021, IEEE Transactions on Intelligent Transportation Systems.

[29]  C. Theobalt,et al.  Neural Rays for Occlusion-aware Image-based Rendering , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Claire Dune,et al.  Challenges and Outlook in Robotic Manipulation of Deformable Objects , 2021, IEEE Robotics & Automation Magazine.

[31]  Christoffer Heckman,et al.  ColoRadar: The direct 3D millimeter wave radar dataset , 2021, Int. J. Robotics Res..

[32]  Ken Goldberg,et al.  Evo-NeRF: Evolving NeRF for Sequential Robot Grasping of Transparent Objects , 2022, CoRL.

[33]  A. Aspuru‐Guzik,et al.  Predicting 3D shapes, masks, and properties of materials inside transparent containers, using the TransProteus CGI dataset , 2022, Digital Discovery.

[34]  Yunhao Yuan,et al.  Self-Adaptive Imbalanced Domain Adaptation With Deep Sparse Autoencoder , 2023, IEEE Transactions on Artificial Intelligence.

[35]  G. Koutaki,et al.  6D Pose Estimation of Transparent Object From Single RGB Image for Robotic Manipulation , 2022, IEEE Access.

[36]  Shan Luo,et al.  Robotic Perception of Object Properties using Tactile Sensing , 2021, ArXiv.

[37]  Ken Goldberg,et al.  Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects , 2021, CoRL.

[38]  Zheng-guang Xu,et al.  Real-time Transparent Object Segmentation Based on Improved DeepLabv3+ , 2021, 2021 China Automation Congress (CAC).

[39]  Jiaxiong Qiu,et al.  Transfusion: A Novel SLAM Method Focused on Transparent Objects , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Sagi Eppel,et al.  Seeing Glass: Joint Point Cloud and Depth Completion for Transparent Objects , 2021, CoRL.

[41]  Zhenguo Yang,et al.  DepthGrasp: Depth Completion of Transparent Objects Using Self-Attentive Adversarial Network with Spectral Residual for Grasping , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[42]  Jaesik Chang,et al.  GhostPose*: Multi-view Pose Estimation of Transparent Objects for Robot Hand Grasping , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[43]  Kris M. Kitani,et al.  StereOBJ-1M: Large-scale Stereo Image Dataset for 6D Object Pose Estimation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Ding Liang,et al.  Segmenting Transparent Objects in the Wild with Transformer , 2021, IJCAI.

[45]  Rolando Estrada,et al.  SuperCaustics: Real-time, open-source simulation of transparent objects for deep learning applications , 2021, 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).

[46]  Rynson W. H. Lau,et al.  Rich Context Aggregation with Reflection Prior for Glass Surface Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  A. Torralba,et al.  Intelligent Carpet: Inferring 3D Human Pose from Tactile Signals , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Anima Anandkumar,et al.  SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers , 2021, NeurIPS.

[49]  Yaowei Wang,et al.  Conformer: Local Features Coupling Global Representations for Visual Recognition , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Hammad Mazhar,et al.  RGB-D Local Implicit Function for Depth Completion of Transparent Objects , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Jimin Xiao,et al.  Self-Guided and Cross-Guided Learning for Few-Shot Segmentation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Gaofeng Meng,et al.  Enhanced Boundary Learning for Glass-like Object Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[53]  Jonathan T. Barron,et al.  Baking Neural Radiance Fields for Real-Time View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[54]  Qibin Hou,et al.  FakeMix Augmentation Improves Transparent Object Detection , 2021, ArXiv.

[55]  Meiqing Wu,et al.  CAP: Context-Aware Pruning for Semantic Segmentation , 2021, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[56]  Francesc Moreno-Noguer,et al.  D-NeRF: Neural Radiance Fields for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  V. Devabhaktuni,et al.  U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications , 2020, IEEE Access.

[58]  Yalin Zheng,et al.  ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model , 2020, IEEE Transactions on Medical Imaging.

[59]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[60]  Robert B. Fisher,et al.  Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views , 2021, NeurIPS.

[61]  Chi Xu,et al.  6DoF Pose Estimation of Transparent Object from a Single RGB-D Image , 2020, Sensors.

[62]  Dacheng Tao,et al.  Self-Supervised Pose Adaptation for Cross-Domain Image Animation , 2020, IEEE Transactions on Artificial Intelligence.

[63]  Qiang Zhang,et al.  Don’t Hit Me! Glass Detection in Real-World Scenes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Ramesh Raskar,et al.  Deep Polarization Cues for Transparent Object Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Zhengqin Li,et al.  Through the Looking Glass: Neural 3D Reconstruction of Transparent Shapes , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Chunhua Shen,et al.  Segmenting Transparent Objects in the Wild , 2020, ECCV.

[67]  Guosheng Lin,et al.  CRNet: Cross-Reference Networks for Few-Shot Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[69]  Jose Javier Gonzalez Ortiz,et al.  What is the State of Neural Network Pruning? , 2020, MLSys.

[70]  Oliver Kroemer,et al.  Multi-Modal Transfer Learning for Grasping Transparent and Specular Objects , 2020, IEEE Robotics and Automation Letters.

[71]  Zhenyu A. Liao,et al.  AdaBits: Neural Network Quantization With Adaptive Bit-Widths , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Anelia Angelova,et al.  KeyPose: Multi-View 3D Labeling and Keypoint Estimation for Transparent Objects , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Siyang Cao,et al.  mm-Pose: Real-Time Human Skeletal Posture Estimation Using mmWave Radars and CNNs , 2019, IEEE Sensors Journal.

[74]  Shuran Song,et al.  Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[75]  O. C. Jenkins,et al.  LIT: Light-Field Inference of Transparency for Refractive Object Localization , 2019, IEEE Robotics and Automation Letters.

[76]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[77]  M. Sundermeyer,et al.  BlenderProc: Reducing the Reality Gap with Photorealistic Rendering , 2020 .

[78]  Tatsuya Harada,et al.  Simultaneous Transparent and Non-Transparent Object Segmentation With Multispectral Scenes , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[79]  Keiji Yanai,et al.  Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[80]  Odest Chadwicke Jenkins,et al.  GlassLoc: Plenoptic Grasp Pose Detection in Transparent Clutter , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[81]  Hui Yu,et al.  Leveraging an Instance Segmentation Method for Detection of Transparent Materials , 2019, 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).

[82]  Dacheng Tao,et al.  Geometry-Aware Symmetric Domain Adaptation for Monocular Depth Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Atsushi Shimada,et al.  TransCut2: Transparent Object Segmentation From a Light-Field Image , 2019, IEEE Transactions on Computational Imaging.

[84]  Silvio Savarese,et al.  DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[85]  Mingjie Sun,et al.  Rethinking the Value of Network Pruning , 2018, ICLR.

[86]  In-So Kweon,et al.  CBAM: Convolutional Block Attention Module , 2018, ECCV.

[87]  Steven L. Waslander,et al.  Leveraging Pre-Trained 3D Object Detection Models for Fast Ground Truth Generation , 2018, 2018 21st International Conference on Intelligent Transportation Systems (ITSC).

[88]  Odest Chadwicke Jenkins,et al.  Plenoptic Monte Carlo Object Localization for Robot Grasping Under Layered Translucency , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[89]  Minglun Gong,et al.  Full 3D reconstruction of transparent objects , 2018, ACM Trans. Graph..

[90]  Yinda Zhang,et al.  Deep Depth Completion of a Single RGB-D Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[91]  Kai Han,et al.  TOM-Net: Learning Transparent Object Matting from a Single Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[92]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[93]  Luc Van Gool,et al.  Deep Extreme Cut: From Extreme Points to Object Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[94]  Roland Siegwart,et al.  Safe Local Exploration for Replanning in Cluttered Unknown Environments for Microaerial Vehicles , 2017, IEEE Robotics and Automation Letters.

[95]  Oliver Brock,et al.  Analysis and Observations From the First Amazon Picking Challenge , 2016, IEEE Transactions on Automation Science and Engineering.

[96]  Eric P. Xing,et al.  Few-Shot Semantic Segmentation with Prototype Learning , 2018, BMVC.

[97]  Edward H. Adelson,et al.  GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force , 2017, Sensors.

[98]  Ravinder Dahiya,et al.  Robotic Tactile Perception of Object Properties: A Review , 2017, ArXiv.

[99]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[100]  Ashish Kapoor,et al.  AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles , 2017, FSR.

[101]  Wojciech Zaremba,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[102]  Lin Xu,et al.  Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights , 2017, ICLR.

[103]  Yijun Ji,et al.  Fusing Depth and Silhouette for Scanning Transparent Object with RGB-D Sensor , 2017 .

[104]  Alan L. Yuille,et al.  UnrealCV: Connecting Computer Vision to Unreal Engine , 2016, ECCV Workshops.

[105]  Minglun Gong,et al.  3D Reconstruction of Transparent Objects with Position-Normal Consistency , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[106]  Kostas Daniilidis,et al.  Seeing Glassware: from Edge Detection to Pose Estimation and Shape Recovery , 2016, Robotics: Science and Systems.

[107]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Ren C. Luo,et al.  Transparent object recognition and retrieval for robotic bio-laboratory automation applications , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[109]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[110]  Atsushi Shimada,et al.  TransCut: Transparent Object Segmentation from a Light-Field Image , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[111]  Kai Han,et al.  A fixed viewpoint approach for dense reconstruction of transparent objects , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Tai-Pang Wu,et al.  Normal Estimation of a Transparent Object Using a Video , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[113]  Walterio W. Mayol-Cuevas,et al.  Recognition and reconstruction of transparent objects for augmented reality , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[114]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[115]  Nick Barnes,et al.  Glass object segmentation by label transfer on joint depth and appearance manifolds , 2013, 2013 IEEE International Conference on Image Processing.

[116]  Atsushi Shimada,et al.  Light Field Distortion Feature for Transparent Object Recognition , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[117]  Vincent Rabaud,et al.  Pose estimation of rigid transparent objects in transparent clutter , 2013, 2013 IEEE International Conference on Robotics and Automation.

[118]  Stephen Marsland,et al.  Seeing the Unseen: Simple Reconstruction of Transparent Objects from Point Cloud Data , 2013 .

[119]  Surya P. N. Singh,et al.  V-REP: A versatile and scalable robot simulation framework , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[120]  Nick Barnes,et al.  Glass object localization by joint inference of boundary and depth , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[121]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Gary R. Bradski,et al.  Recognition and Pose Estimation of Rigid Transparent Objects with a Kinect Sensor , 2012, Robotics: Science and Systems.

[123]  P. Larkin Infrared and Raman Spectroscopy: Principles and Spectral Interpretation , 2011 .

[124]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[125]  Michael Beetz,et al.  Transparent object detection and reconstruction on a mobile platform , 2011, 2011 IEEE International Conference on Robotics and Automation.

[126]  David Fofi,et al.  3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation , 2010, 2010 IEEE International Conference on Image Processing.

[127]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[128]  Kiriakos N. Kutulakos,et al.  Transparent and Specular Object Reconstruction , 2010, Comput. Graph. Forum.

[129]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[130]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[131]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[132]  Jean Ponce,et al.  A Geodesic Active Contour Framework for Finding Glass , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[133]  David A. Forsyth,et al.  Finding glass , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[134]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[135]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[136]  Katsushi Ikeuchi,et al.  Transparent surface modeling from a pair of polarization images , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[137]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[138]  Paul A. Viola,et al.  Roxels: responsibility weighted 3D volume reconstruction , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[139]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[140]  M. Potmesil Generating octree models of 3D objects from their silhouettes in a sequence of images , 1987, Comput. Vis. Graph. Image Process..