Sensing, intelligence, motion - how robots and humans move in an unstructured world

Preface. Acknowledgments. 1 Motion Planning-Introduction. 1.1 Introduction. 1.2 Basic Concepts. 1.2.1 Robot? What Robot? 1.2.2 Space. Objects. 1.2.3 Input Information. Sensing. 1.2.4 Degrees of Freedom. Coordinate Systems. 1.2.5 Motion Control. 1.2.6 Robot Programming. 1.2.7 Motion Planning. 2 A Quick Sketch of Major Issues in Robotics. 2.1 Kinematics. 2.2 Statics. 2.3 Dynamics. 2.4 Feedback Control. 2.5 Compliant Motion. 2.6 Trajectory Modification. 2.7 Collision Avoidance. 2.8 Motion Planning with Complete Information. 2.9 Motion Planning with Incomplete Information. 2.9.1 The Beginnings. 2.9.2 Maze-to-Graph Transition. 2.9.3 Sensor-Based Motion Planning. 2.10 Exercises. 3 Motion Planning for a Mobile Robot. 3.1 The Model. 3.2 Universal Lower Bound for the Path Planning Problem. 3.3 Basic Algorithms. 3.3.1 First Basic Algorithm: Bug1. 3.3.2 Second Basic Algorithm: Bug2. 3.4 Combining Good Features of Basic Algorithms. 3.5 Going After Tighter Bounds. 3.6 Vision and Motion Planning. 3.6.1 The Model. 3.6.2 Algorithm VisBug-21. 3.6.3 Algorithm VisBug-22. 3.7 From a Point Robot to a Physical Robot. 3.8 Other Approaches. 3.9 Which Algorithm to Choose? 3.10 Discussion. 3.11 Exercises. 4 Accounting for Body Dynamics: The Jogger's Problem. 4.1 Problem Statement. 4.2 Maximum Turn Strategy. 4.2.1 The Model. 4.2.2 Sketching the Approach. 4.2.3 Velocity Constraints. Minimum Time Braking. 4.2.4 Optimal Straight-Line Motion. 4.2.5 Dynamics and Collision Avoidance. 4.2.6 The Algorithm. 4.2.7 Examples. 4.3 Minimum Time Strategy. 4.3.1 The Model. 4.3.2 Sketching the Approach. 4.3.3 Dynamics and Collision Avoidance. 4.3.4 Canonical Solution. 4.3.5 Near-Canonical Solution. 4.3.6 The Algorithm. 4.3.7 Convergence. Computational Complexity. 4.3.8 Examples. 5 Motion Planning for Two-Dimensional Arm Manipulators. 5.1 Introduction. 5.1.1 Model and Definitions. 5.2 Planar Revolute-Revolute (RR) Arm. 5.2.1 Analysis. 5.2.2 Algorithm. 5.2.3 Step Planning. 5.2.4 Example. 5.2.5 Motion Planning with Vision and Proximity Sensing. 5.2.6 Concluding Remarks. 5.3 Distinct Kinematic Configurations of RR Arm. 5.4 Prismatic-Prismatic (PP, or Cartesian) Arm. 5.5 Revolute-Prismatic (RP) Arm with Parallel Links. 5.6 Revolute-Prismatic (RP) Arm with Perpendicular Links. 5.7 Prismatic-Revolute (PR) Arm. 5.8 Topology of Arm's Free Configuration Space. 5.8.1 Workspace Configuration Space. 5.8.2 Interaction Between the Robot and Obstacles. 5.8.3 Uniform Local Connectedness. 5.8.4 The General Case of 2-DOF Arm Manipulators. 5.9 Appendix. 5.10 Exercises. 6 Motion Planning for Three-Dimensional Arm Manipulators. 6.1 Introduction. 6.2 The Case of the PPP (Cartesian) Arm. 6.2.1 Model, Definitions, and Terminology. 6.2.2 The Approach. 6.2.3 Topology of W-Obstacles and C-Obstacles. 6.2.4 Connectivity of C. 6.2.5 Algorithm. 6.2.6 Examples. 6.3 Three-Link XXP Arm Manipulators. 6.3.1 Robot Arm Representation Spaces. 6.3.2 Monotonicity of Joint Space. 6.3.3 Connectivity of Jf. 6.3.4 Retraction of Jf. 6.3.5 Configuration Space and Its Retract. 6.3.6 Connectivity Graph. 6.3.7 Lifting 2D Algorithms into 3D. 6.3.8 Step Planning. 6.3.9 Discussion. 6.4 Other XXX Arms. 7 Human Performance in Motion Planning. 7.1 Introduction. 7.2 Preliminary Observations. 7.2.1 Moving in a Maze. 7.2.2 Moving an Arm Manipulator. 7.2.3 Conclusions and Plan for Experiment Design. 7.3 Experiment Design. 7.3.1 The Setup. 7.3.2 Test Protocol. 7.4 Results-Experiment One. 7.4.1 Principal Components Analysis. 7.4.2 Nonparametric Statistics. 7.4.3 Univariate Analysis of Variance. 7.4.4 Two-Way Analysis of Variance. 7.4.5 Implementation: Two-Way Analysis for Path Length. 7.4.6 Implementation: Two-Way Analysis for Completion Time. 7.5 Results-Experiment Two. 7.5.1 The Technique. 7.5.2 Implementation Scheme. 7.5.3 Results and Interpretation. 7.6 Discussion. 8 Sensitive Skin-Designing an All-Sensitive Robot Arm Manipulator. 8.1 Introduction. 8.2 Salient Characteristics of a Sensitive Skin. 8.3 Skin Design. 8.4 Examples. 9 Suggested Course Projects. References. Index.

[1]  Giuseppe Oriolo,et al.  Robot Obstacle Avoidance Using Vortex Fields , 1991 .

[2]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[3]  Vladimir J. Lumelsky,et al.  A sensitive skin system for motion control of robot arm manipulators , 1992, Robotics Auton. Syst..

[4]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[5]  Vladimir J. Lumelsky,et al.  Fault tolerance via analytic redundancy for a modularized sensitive skin , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[6]  Vladimir J. Lumelsky,et al.  A comparative study on the path length performance of maze-searching and robot motion planning algorithms , 1991, IEEE Trans. Robotics Autom..

[7]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[8]  R. Chattergy,et al.  Some Heuristics for the Navigation of a Robot , 1985 .

[9]  Vladimir J. Lumelsky,et al.  The role of time constraints in the design of control for the jogger's problem , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  Bruce Randall Donald,et al.  A provably good approximation algorithm for optimal-time trajectory planning , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[11]  Howie Choset,et al.  Sensor based planning for a planar rod robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Alex Meystel,et al.  Algorithm of navigation for a mobile robot , 1984, ICRA.

[13]  Vladimir J. Lumelsky,et al.  The jogger's problem: accounting for body dynamics in real-time motion planning , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[14]  John E. Hopcroft,et al.  Motion of Objects in Contact , 1984 .

[15]  Alan M. Thompson The Navigation System of the JPL Robot , 1977, IJCAI.

[16]  A. A. Petrov,et al.  Control of a Robot-Manipulator with Obstacle Avoidance Under Little Information about the Environment , 1981 .

[17]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[18]  Harold R. Lindman Analysis of Variance in Experimental Design , 1991 .

[19]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[20]  A. Bejczy Robot arm dynamics and control , 1974 .

[21]  Russell H. Taylor,et al.  Planning and execution of straight line manipulator trajectories , 1979 .

[22]  George Henry Dunteman,et al.  Introduction To Multivariate Analysis , 1984 .

[23]  Vladimir J. Lumelsky,et al.  A modularized sensitive skin for motion planning in uncertain environments , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  Thierry Fraichard,et al.  Car-like robots and moving obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[25]  D. T. Greenwood Principles of dynamics , 1965 .

[26]  Vladimir J. Lumelsky,et al.  Proximity sensing in robot manipulator motion planning: system and implementation issues , 1989, IEEE Trans. Robotics Autom..

[27]  James E. Bobrow,et al.  Optimal robot plant planning using the minimum-time criterion , 1988, IEEE J. Robotics Autom..

[28]  Hans P. Moravec,et al.  The Stanford Cart and the CMU Rover , 1983, Proceedings of the IEEE.

[29]  Toshihiro Matsui,et al.  An integrated robot teleoperation method using multi-media display , 1991 .

[30]  Thomas B. Sheridan,et al.  Telerobotics, Automation, and Human Supervisory Control , 2003 .

[31]  O. Ore Theory of Graphs , 1962 .

[32]  Giuseppe Oriolo,et al.  Local incremental planning for nonholonomic mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[33]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[34]  Hermann Kern,et al.  Labyrinthe : Erscheinungsformen und Deutungen : 5000 Jahre Gegenwart eines Urbilds , 1995 .

[35]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .

[36]  Bernard Faverjon,et al.  Obstacle avoidance using an octree in the configuration space of a manipulator , 1984, ICRA.

[37]  D. Y. Tseng,et al.  Autonomous vehicle control: an overview of the Hughes project , 1983 .

[38]  Vladimir J. Lumelsky,et al.  Vision-guided exploration: a step toward general motion planning in three dimensions , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[39]  R. Brooks Planning Collision- Free Motions for Pick-and-Place Operations , 1983 .

[40]  Richard D. DeVeaux Statistical Factor Analysis and Related Methods , 1996 .

[41]  H. Kern Through the Labyrinth: Designs and Meanings Over 5,000 Years , 2000 .

[42]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[43]  P. Khosla,et al.  Artificial potentials with elliptical isopotential contours for obstacle avoidance , 1987, 26th IEEE Conference on Decision and Control.

[44]  Vladimir J. Lumelsky,et al.  A Unified Methodology for Motion Planning with Uncertainty for 2D and 3D Two-Link Robot Arm Manipulators , 1990, Int. J. Robotics Res..

[45]  Vladimir J. Lumelsky,et al.  Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators , 1993, IEEE Trans. Syst. Man Cybern..

[46]  Ian T. Jolliffe,et al.  Principal Component Analysis , 1986, Springer Series in Statistics.

[47]  Vladimir J. Lumelsky,et al.  Real-time path planning procedure for a whole-sensitive robot arm manipulator , 1992, Robotica.

[48]  Micha Sharir,et al.  Retraction: A new approach to motion-planning , 1983, STOC.

[49]  R. Oppermann Elements of the topology of plane sets of points: by M. H. A. Newman. 221 pages, illustrations, 15 × 23 cms. New York, The Macmillan Company, 1939. Price $3.50 , 1939 .

[50]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[51]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[52]  Z. Suo,et al.  Stretchable and deformable macroelectronics , 2003, 61st Device Research Conference. Conference Digest (Cat. No.03TH8663).

[53]  I. Bernstein Applied Multivariate Analysis , 1988 .

[54]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[55]  James L. Crowley,et al.  Navigation for an intelligent mobile robot , 1985, IEEE J. Robotics Autom..

[56]  Mathukumalli Vidyasagar,et al.  Path planning for moving a point object amidst unknown obstacles in a plane: the universal lower bound on the worst path lengths and a classification of algorithms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[57]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[58]  J. Reif A Survey on Advances in the Theory of Computational Robotics , 1986 .

[59]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[60]  E. F. Moore The firing squad synchronization problem , 1964 .

[61]  Vladimir Lumelsky,et al.  Effect of uncertainty on continuous path planning for an autonomous vehicle , 1984, The 23rd IEEE Conference on Decision and Control.

[62]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[63]  S. Sitharama Iyengar,et al.  On terrain acquisition by a finite-sized mobile robot in plane , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[64]  Richard Paul Collins Paul,et al.  Modelling, trajectory calculation and servoing of a computer controlled arm , 1972 .

[65]  A. Fraenkel Economic Traversal of Labyrinths , 1970 .

[66]  J. V. Bradley Distribution-Free Statistical Tests , 1968 .

[67]  Vladimir J. Lumelsky,et al.  Decentralized Motion Planning for Multiple Mobile Robots: The Cocktail Party Model , 1997, Auton. Robots.

[68]  Colm Ó'Dúnlaing Motion planning with inertial constraints , 2005, Algorithmica.

[69]  John F. Canny,et al.  An exact algorithm for kinodynamic planning in the plane , 1991, Discret. Comput. Geom..

[70]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[71]  Franco P. Preparata,et al.  Segments, Rectangles, Contours , 1981, J. Algorithms.

[72]  Azriel Rosenfeld,et al.  Navigational Functionalities , 1995, Comput. Vis. Image Underst..

[73]  Larry H. Matthies,et al.  An autonomous path planner implemented on the Rocky 7 prototype microrover , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[74]  Tomás Lozano-Pérez,et al.  Automatic Planning of Manipulator Transfer Movements , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[75]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[76]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[77]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[78]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[79]  Raja Chatila,et al.  Path Planning and Environment Learning in a Mobile Robot System , 1982, ECAI.

[80]  S. Hayati,et al.  A testbed for a unified teleoperated-autonomous dual-arm robotic system , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[81]  Frederick M. Waltz,et al.  Interactive Image Processing for Machine Vision , 1993 .

[82]  Leslie M. Hocking,et al.  Optimal control , 1991 .

[83]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[84]  Wyatt S. Newman,et al.  Reflexive collision avoidance: a generalized approach , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[85]  Hiroshi Noborio,et al.  Several Path-Planning Algorithms Mobile Robot for an Uncertain Workspace and their Evaluation , 1990, Proceedings of the IEEE International Workshop on Intelligent Motion Control.

[86]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[87]  Joël Marchand The algorithm by Schwartz, Sharir and Collins on the piano mover's problem , 1988, Geometry and Robotics.

[88]  V. Lumelsky,et al.  Sensitive skin , 2000, IEEE Sensors Journal.

[89]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[90]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[91]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[92]  Howie Choset,et al.  Mobile robot navigation: issues in implementating the generalized Voronoi graph in the plane , 1996, 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No.96TH8242).

[93]  Richard H. Jones Analysis of repeated measures , 1992 .

[94]  Charles E. Thorpe,et al.  Path Relaxation: Path Planning for a Mobile Robot , 1984, AAAI.

[95]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[96]  M. Vidyasagar,et al.  Path planning for moving a point object amidst unknown obstacles in a plane: a new algorithm and a general theory for algorithm development , 1990, 29th IEEE Conference on Decision and Control.

[97]  Vladimir J. Lumelsky Effect of kinematics on motion planning for planar robot arms moving amidst unknown obstacles , 1987, IEEE J. Robotics Autom..

[98]  Michel Taïx,et al.  Efficient motion planners for nonholonomic mobile robots , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[99]  John E. Hopcroft,et al.  On the movement of robot arms in 2-dimensional bounded regions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[100]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[101]  Ralph W. Will,et al.  A flexible telerobotic system for space operations , 1987 .

[102]  Jean-Claude Latombe A Fast Path Planner for a Car-Like Indoor Mobile Robot , 1991, AAAI.