Multi-robot informative path planning in unknown environments through continuous region partitioning

We consider the NP-hard problem of multirobot informative path planning in the presence of communication constraints, where the objective is to collect higher amounts of information of an ambient phenomenon. We propose a novel approach that uses continuous region partitioning into Voronoi components to efficiently divide an initially unknown environment among the robots based on newly discovered obstacles enabling improved load balancing between robots. Simulation results show that our proposed approach is successful in reducing the initial imbalance of the robots’ allocated free regions while ensuring close-to-reality spatial modeling within a reasonable amount of time.

[1]  Andreas Krause,et al.  Nonmyopic Informative Path Planning in Spatio-Temporal Models , 2007, AAAI.

[2]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[3]  Gaurav S. Sukhatme,et al.  Multi-robot Informative and Adaptive Planning for Persistent Environmental Monitoring , 2016, DARS.

[4]  Zhe Xu,et al.  Distributed Multi-Robot Cooperation for Information Gathering Under Communication Constraints , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004, ArXiv.

[6]  Pierre F. J. Lermusiaux,et al.  Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles , 2016 .

[7]  Andreas Krause,et al.  Efficient Planning of Informative Paths for Multiple Robots , 2006, IJCAI.

[8]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[9]  Alkis Gotovos,et al.  Fully autonomous focused exploration for robotic environmental monitoring , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[11]  Prithviraj Dasgupta,et al.  Multi-robot information driven path planning under communication constraints , 2019, Autonomous Robots.

[12]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[13]  Aníbal Ollero,et al.  A decentralized algorithm for area surveillance missions using a team of aerial robots with different sensing capabilities , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Geoffrey A. Hollinger,et al.  Sampling-based robotic information gathering algorithms , 2014, Int. J. Robotics Res..

[15]  Ruggero Carli,et al.  Discrete Partitioning and Coverage Control for Gossiping Robots , 2010, IEEE Transactions on Robotics.

[16]  Vishnu G. Nair,et al.  GM-VPC: An Algorithm for Multi-robot Coverage of Known Spaces Using Generalized Voronoi Partition , 2019, Robotica.

[17]  Katia P. Sycara,et al.  Adaptive Sampling and Online Learning in Multi-Robot Sensor Coverage with Mixture of Gaussian Processes , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Jeroen Tromp,et al.  InSight: An Integrated Exploration of the Interior of Mars , 2012 .

[19]  Weihua Sheng,et al.  Distributed multi-robot work load partition in manufacturing automation , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[20]  Gaurav S. Sukhatme,et al.  Multi-robot coordination through dynamic Voronoi partitioning for informative adaptive sampling in communication-constrained environments , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Ayan Dutta,et al.  Multi-robot Informative Path Planning with Continuous Connectivity Constraints , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[22]  Roland Siegwart,et al.  Voronoi coverage of non-convex environments with a group of networked robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[23]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[24]  David Hsu,et al.  Adaptive informative path planning in metric spaces , 2015, Int. J. Robotics Res..

[25]  Mac Schwager,et al.  Distributed Coverage Control with Sensory Feedback for Networked Robots , 2006, Robotics: Science and Systems.

[26]  Gaurav S. Sukhatme,et al.  Adaptive informative sampling with autonomous underwater vehicles: Acoustic versus surface communications , 2016, OCEANS 2016 MTS/IEEE Monterey.

[27]  Andreas Krause,et al.  Nonmyopic Adaptive Informative Path Planning for Multiple Robots , 2009, IJCAI.

[28]  Geoffrey A. Hollinger,et al.  Multi-robot coordination with periodic connectivity , 2010, 2010 IEEE International Conference on Robotics and Automation.

[29]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[30]  Prithviraj Dasgupta,et al.  A Repartitioning Algorithm to Guarantee Complete, Non-overlapping Planar Coverage with Multiple Robots , 2014, DARS.

[31]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[32]  Kian Hsiang Low,et al.  Information-Theoretic Approach to Efficient Adaptive Path Planning for Mobile Robotic Environmental Sensing , 2009, ICAPS.

[33]  Prithviraj Dasgupta,et al.  Simultaneous configuration formation and information collection by modular robotic systems , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Goldie Nejat,et al.  Robotic Urban Search and Rescue: A Survey from the Control Perspective , 2013, J. Intell. Robotic Syst..

[35]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[36]  P. Dasgupta,et al.  Complete Coverage of an Initially Unknown Environment by Multiple Robots using Voronoi Partition ∗ , 2012 .

[37]  Saptarshi Bandyopadhyay,et al.  Fast, On-line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells , 2017, IEEE Robotics and Automation Letters.

[38]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[39]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[40]  Vishnu G. Nair,et al.  Manhattan distance based Voronoi partitioning for efficient multi-robot coverage , 2020 .

[41]  Kian Hsiang Low,et al.  Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms , 2013, AAMAS.

[42]  Howie Choset,et al.  Sensor Based Planing, Part I: The Generalized Voronoi Graph , 1995, ICRA.