Modal kinematics for multisection continuum arms

This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.

[1]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[2]  D.M. Dawson,et al.  Neural Network Grasping Controller for Continuum Robots , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[4]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[5]  B Mazzolai,et al.  Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions , 2012, Bioinspiration & biomimetics.

[6]  Robert A. Adams,et al.  Calculus: A Complete Course , 1994 .

[7]  Yacine Amirat,et al.  Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery , 2011, IEEE Transactions on Robotics.

[8]  Ian A. Gravagne,et al.  On the kinematics of remotely-actuated continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Ian D. Walker,et al.  Design and experimental testing of the OctArm soft robot manipulator , 2006, SPIE Defense + Commercial Sensing.

[11]  Gregory S. Chirikjian,et al.  Kinematics of Hyper-Redundant Manipulators , 1991 .

[12]  O. Sawodny,et al.  Forward kinematics of a compliant pneumatically actuated redundant manipulator , 2012, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[13]  D. G. Caldwell,et al.  Path planning for multisection continuum arms , 2012, 2012 IEEE International Conference on Mechatronics and Automation.

[14]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[15]  Russell H. Taylor,et al.  A dexterous system for laryngeal surgery , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  Darwin G. Caldwell,et al.  Octopus inspired walking robot: Design, control and experimental validation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[17]  A. Shabana Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics , 1998 .

[18]  Jochen J. Steil,et al.  Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  D.M. Lane,et al.  Subsea applications of continuum robots , 1998, Proceedings of 1998 International Symposium on Underwater Technology.

[20]  H. Mochiyama,et al.  Hyper-flexible robotic manipulators , 2005, IEEE International Symposium on Micro-NanoMechatronics and Human Science, 2005.

[21]  Kenneth Salisbury,et al.  Whole arm manipulation , 1988 .

[22]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[23]  Ian D. Walker,et al.  A model-based sliding mode controller for extensible continuum robots , 2010 .

[24]  Rob Buckingham,et al.  Snake arm robots , 2002 .

[25]  Jinwoo Jung,et al.  Interleaved continuum-rigid manipulation: An augmented approach for robotic minimally-invasive flexible catheter-based procedures , 2013, 2013 IEEE International Conference on Robotics and Automation.

[26]  Darwin G. Caldwell,et al.  Dynamic continuum arm model for use with underwater robotic manipulators inspired by octopus vulgaris , 2012, 2012 IEEE International Conference on Robotics and Automation.

[27]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[28]  Ian D. Walker,et al.  Continuous Backbone “Continuum” Robot Manipulators , 2013 .

[29]  Ian D. Walker,et al.  Closed-Form Inverse Kinematics for Continuum Manipulators , 2009, Adv. Robotics.

[30]  Ian D. Walker,et al.  Three module lumped element model of a continuum arm section , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Koichi Suzumori,et al.  Elastic materials producing compliant robots , 1996, Robotics Auton. Syst..

[32]  Ian D. Walker,et al.  Dynamic Modelling for Planar Extensible Continuum Robot Manipulators , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[33]  Darwin G. Caldwell,et al.  Locomotion with continuum limbs , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[35]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[36]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[37]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[38]  Darwin G. Caldwell,et al.  Control of pneumatic muscle actuators , 1995 .

[39]  Jing Xiao,et al.  Determining “grasping” configurations for a spatial continuum manipulator , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Kai Xu,et al.  Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals , 2010 .

[41]  Ian D. Walker,et al.  Limiting-case Analysis of Continuum Trunk Kinematics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[42]  Ian D. Walker,et al.  Extension versus Bending for Continuum Robots , 2006, ICINCO.

[43]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[44]  B. Dasgupta,et al.  A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators , 1999 .