Optimal Control Using Nonholonomic Integrators

This paper addresses the optimal control of nonholonomic systems through provably correct discretization of the system dynamics. The essence of the approach lies in the discretization of the Lagrange-d'Alembert principle which results in a set of forced discrete Euler-Lagrange equations and discrete nonholonomic constraints that serve as equality constraints for the optimization of a given cost functional. The method is used to investigate optimal trajectories of wheeled robots.

[1]  Jerrold E. Marsden,et al.  Control for an autonomous bicycle , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[2]  Vijay Kumar,et al.  Optimal Gait Selection for Nonholonomic Locomotion Systems , 2000, Int. J. Robotics Res..

[3]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[4]  Howie Choset,et al.  Motion Planning for Dynamic Variable Inertia Mechanical Systems with Non-holonomic Constraints , 2006 .

[5]  Florent Lamiraux,et al.  Reactive path deformation for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics.

[6]  Mark B. Milam,et al.  Inversion Based Constrained Trajectory Optimization , 2001 .

[7]  Mark B. Milam,et al.  A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[8]  J. Marsden,et al.  Discrete mechanics and optimal control , 2005 .

[9]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[10]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[11]  Taeyoung Lee,et al.  Optimal Control of a Rigid Body using Geometrically Exact Computations on SE(3) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[13]  R. Murray,et al.  Trajectory Planning of Differentially Flat Systems with Dynamics and Inequalities , 2000 .

[14]  Alonzo Kelly,et al.  Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control , 2003, Int. J. Robotics Res..

[15]  Jorge Cortes Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .

[16]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[17]  James P. Ostrowski Computing reduced equations for robotic systems with constraints and symmetries , 1999, IEEE Trans. Robotics Autom..

[18]  Konstantin Kondak,et al.  Computation of optimal and collisionfree movements for mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[19]  R. Murray,et al.  Optimization-Based Navigation for the DARPA Grand Challenge , 2006 .

[20]  Sonia Martínez,et al.  Optimal Gaits for Dynamic Robotic Locomotion , 2001, Int. J. Robotics Res..

[21]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[22]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[23]  Jing-Sin Liu,et al.  A nonlinear programming approach to nonholonomic motion planning with obstacle avoidance , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[24]  F. Bullo,et al.  Randomized searches and nonlinear programming in trajectory planning , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[25]  Robert I. McLachlan,et al.  Integrators for Nonholonomic Mechanical Systems , 2006, J. Nonlinear Sci..

[26]  J.E. Marsden,et al.  Optimal Motion of an Articulated Body in a Perfect Fluid , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[28]  Vijay Kumar,et al.  Motion planning for cooperating mobile manipulators , 1999, J. Field Robotics.

[29]  B. Mettler,et al.  Nonlinear trajectory generation for autonomous vehicles via parameterized maneuver classes , 2006 .

[30]  Emilio Frazzoli,et al.  Exploiting group symmetries to improve precision in kinodynamic and nonholonomic planning , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).