A latent variable modeling framework for analyzing neural population activity

Title of dissertation: A LATENT VARIABLE MODELING FRAMEWORK FOR ANALYZING NEURAL POPULATION ACTIVITY Matthew R. Whiteway Doctor of Philosophy, 2018 Dissertation directed by: Professor Daniel A. Butts Department of Biology Neuroscience is entering the age of big data, due to technological advances in electrical and optical recording techniques. Where historically neuroscientists have only been able to record activity from single neurons at a time, recent advances allow the measurement of activity from multiple neurons simultaneously. In fact, this advancement follows a Moore’s Law-style trend, where the number of simultaneously recorded neurons more than doubles every seven years, and it is now common to see simultaneous recordings from hundreds and even thousands of neurons. The consequences of this data revolution for our understanding of brain structure and function cannot be understated. Not only is there opportunity to address old questions in new ways, but more importantly these experimental techniques will allow neuroscientists to address new questions entirely. However, addressing these questions successfully requires the development of a wide range of new data analysis tools. Many of these tools will draw on recent advances in machine learning and statistics, and in particular there has been a push to develop methods that can accurately model the statistical structure of high-dimensional neural activity. In this dissertation I develop a latent variable modeling framework for analyzing such high-dimensional neural data. First, I demonstrate how this framework can be used in an unsupervised fashion as an exploratory tool for large datasets. Next, I extend this framework to incorporate nonlinearities in two distinct ways, and show that the resulting models far outperform standard linear models at capturing the structure of neural activity. Finally, I use this framework to develop a new algorithm for decoding neural activity, and use this as a tool to address questions about how information is represented in populations of neurons. A LATENT VARIABLE MODELING FRAMEWORK FOR ANALYZING NEURAL POPULATION ACTIVITY

[1]  Matthias Bethge,et al.  Benchmarking Spike Rate Inference in Population Calcium Imaging , 2016, Neuron.

[2]  K. Svoboda,et al.  A Cellular Resolution Map of Barrel Cortex Activity during Tactile Behavior , 2015, Neuron.

[3]  K. Harris,et al.  State-Dependent Representation of Amplitude-Modulated Noise Stimuli in Rat Auditory Cortex , 2011, The Journal of Neuroscience.

[4]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[5]  Jonathan W. Pillow,et al.  Spectral methods for neural characterization using generalized quadratic models , 2013, NIPS.

[6]  Brent Doiron,et al.  The mechanics of state-dependent neural correlations , 2016, Nature Neuroscience.

[7]  Ifije E. Ohiorhenuan,et al.  Sparse coding and high-order correlations in fine-scale cortical networks , 2010, Nature.

[8]  Jan Drugowitsch,et al.  Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information , 2016, Neuron.

[9]  T. Komiyama,et al.  Transformation of Cortex-wide Emergent Properties during Motor Learning , 2017, Neuron.

[10]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[11]  Emili Balaguer-Ballester,et al.  Cortical Variability and Challenges for Modeling Approaches , 2017, Front. Syst. Neurosci..

[12]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[13]  James A. Bednar,et al.  Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes , 2016, PLoS Comput. Biol..

[14]  Nikolaus Kriegeskorte,et al.  Deep Neural Networks in Computational Neuroscience , 2019 .

[15]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[16]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[17]  Eero P. Simoncelli,et al.  Modeling the Impact of Common Noise Inputs on the Network Activity of Retinal Ganglion Cells Action Editor: Brent Doiron , 2022 .

[18]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[19]  G. Tononi,et al.  Dreaming and the brain: from phenomenology to neurophysiology , 2010, Trends in Cognitive Sciences.

[20]  William F. Kindel,et al.  Using deep learning to reveal the neural code for images in primary visual cortex , 2017, ArXiv.

[21]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[22]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[23]  Ryan J. Prenger,et al.  Nonlinear V1 responses to natural scenes revealed by neural network analysis , 2004, Neural Networks.

[24]  Bruno A. Olshausen,et al.  Modeling Higher-Order Correlations within Cortical Microcolumns , 2014, PLoS Comput. Biol..

[25]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[26]  James G. Scott,et al.  Fully Bayesian inference for neural models with negative-binomial spiking , 2012, NIPS.

[27]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[28]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[29]  Konrad P. Körding,et al.  Machine Learning for Neural Decoding , 2017, eNeuro.

[30]  Surya Ganguli,et al.  On simplicity and complexity in the brave new world of large-scale neuroscience , 2015, Current Opinion in Neurobiology.

[31]  P. Latham,et al.  Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior , 2017, Neuron.

[32]  A. Pouget,et al.  Correlations and Neuronal Population Information. , 2016, Annual review of neuroscience.

[33]  Nicholas A. Steinmetz,et al.  Diverse coupling of neurons to populations in sensory cortex , 2015, Nature.

[34]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[35]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[36]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[37]  Yuwei Cui,et al.  Inferring Cortical Variability from Local Field Potentials , 2016, The Journal of Neuroscience.

[38]  Amy M. Ni,et al.  Learning and attention reveal a general relationship between population activity and behavior , 2018, Science.

[39]  Jens Haueisen,et al.  Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity , 2009, Medical & Biological Engineering & Computing.

[40]  Y. Lazebnik Can a biologist fix a radio? — or, what I learned while studying apoptosis , 2004, Biochemistry (Moscow).

[41]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[42]  Sarah M. N. Woolley,et al.  A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds , 2011, PloS one.

[43]  József Fiser,et al.  Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex , 2016, Neuron.

[44]  J. B. Demb,et al.  Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells , 2016, bioRxiv.

[45]  Byron M. Yu,et al.  Extracting Low-Dimensional Latent Structure from Time Series in the Presence of Delays , 2015, Neural Computation.

[46]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[47]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[48]  M. Sahani,et al.  State-Dependent Population Coding in Primary Auditory Cortex , 2015, The Journal of Neuroscience.

[49]  Maneesh Sahani,et al.  Equating information-theoretic and likelihood-based methods for neural dimensionality reduction , 2013, 1308.3542.

[50]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[51]  David Poeppel,et al.  The Tracking of Speech Envelope in the Human Cortex , 2013, PloS one.

[52]  J. Maunsell,et al.  A Neuronal Population Measure of Attention Predicts Behavioral Performance on Individual Trials , 2010, The Journal of Neuroscience.

[53]  D. Leopold,et al.  One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system. , 2014, Journal of neurophysiology.

[54]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[55]  K. Harris,et al.  Cortical state and attention , 2011, Nature Reviews Neuroscience.

[56]  Uri Shalit,et al.  Deep Kalman Filters , 2015, ArXiv.

[57]  Richard C Saunders,et al.  Differential Coding of Conspecific Vocalizations in the Ventral Auditory Cortical Stream , 2014, The Journal of Neuroscience.

[58]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[59]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[60]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[61]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[62]  Emery N. Brown,et al.  Estimating a State-space Model from Point Process Observations Emery N. Brown , 2022 .

[63]  W. Newsome,et al.  Context-Dependent Changes in Functional Circuitry in Visual Area MT , 2008, Neuron.

[64]  Adrian G Bondy,et al.  Feedback Determines the Structure of Correlated Variability in Primary Visual Cortex , 2016, Nature Neuroscience.

[65]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[66]  P. Berkes,et al.  The implications of perception as probabilistic inference for correlated neural variability during behavior , 2014, 1409.0257.

[67]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[68]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[69]  M. Vinck,et al.  Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding , 2014, bioRxiv.

[70]  Mark G. Stokes,et al.  Attention Biases Visual Activity in Visual Short-term Memory , 2014, Journal of Cognitive Neuroscience.

[71]  E. Hess,et al.  Pupillometry: The Psychology of the Pupillary Response , 1978 .

[72]  Maneesh Sahani,et al.  Recurrent linear models of simultaneously-recorded neural populations , 2013, NIPS.

[73]  Kenneth D. Harris,et al.  Neuron NeuroView An International Laboratory for Systems and Computational Neuroscience , 2018 .

[74]  Carey E. Priebe,et al.  Statistical Inference on Random Dot Product Graphs: a Survey , 2017, J. Mach. Learn. Res..

[75]  David Pfau,et al.  Robust learning of low-dimensional dynamics from large neural ensembles , 2013, NIPS.

[76]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[77]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[78]  John P. Cunningham,et al.  Linear dynamical neural population models through nonlinear embeddings , 2016, NIPS.

[79]  Peter E. Latham,et al.  Robust information propagation through noisy neural circuits , 2016, PLoS Comput. Biol..

[80]  Rajesh P. N. Rao,et al.  Predictive Coding , 2019, A Blueprint for the Hard Problem of Consciousness.

[81]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[82]  Jakob H. Macke,et al.  Low-dimensional models of neural population activity in sensory cortical circuits , 2014, NIPS.

[83]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[84]  Stefano Panzeri,et al.  Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains , 2016, PLoS Comput. Biol..

[85]  L. Paninski,et al.  Common-input models for multiple neural spike-train data , 2007, Network.

[86]  Naoshige Uchida,et al.  Demixed principal component analysis of neural population data , 2014, eLife.

[87]  Liam Paninski,et al.  Multilayer Recurrent Network Models of Primate Retinal Ganglion Cell Responses , 2016, ICLR.

[88]  Y Kamitani,et al.  Neural Decoding of Visual Imagery During Sleep , 2013, Science.

[89]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[90]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Qingming Luo,et al.  Grand Challenges for Global Brain Sciences , 2016 .

[92]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[93]  Daoyun Ji,et al.  Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior , 2015, eLife.

[94]  J Anthony Movshon,et al.  Putting big data to good use in neuroscience , 2014, Nature Neuroscience.

[95]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[96]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[97]  Kewei Chen,et al.  Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models , 2013, Front. Neurosci..

[98]  John P. Cunningham,et al.  Empirical models of spiking in neural populations , 2011, NIPS.

[99]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[100]  Timothy J. Blanche,et al.  Construction of Direction Selectivity through Local Energy Computations in Primary Visual Cortex , 2013, PloS one.

[101]  Brian Lau,et al.  Computational subunits of visual cortical neurons revealed by artificial neural networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Wolfram Schultz,et al.  Phasic dopamine signals: from subjective reward value to formal economic utility , 2015, Current Opinion in Behavioral Sciences.

[103]  Charles G. Frye,et al.  Spontaneous activations follow a common developmental course across primary sensory areas in mouse neocortex. , 2016, Journal of neurophysiology.

[104]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[105]  Andrew R. Mitz,et al.  High channel count single-unit recordings from nonhuman primate frontal cortex , 2017, Journal of Neuroscience Methods.

[106]  Leon A. Gatys,et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images , 2017, bioRxiv.

[107]  Joel Zylberberg Untuned But Not Irrelevant: A Role For Untuned Neurons In Sensory Information Coding , 2017 .

[108]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[109]  S. Hestrin,et al.  Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses , 2013, Neuron.

[110]  Shih-Cheng Yen,et al.  Natural Movies Evoke Spike Trains with Low Spike Time Variability in Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[111]  Timothée Masquelier,et al.  Neural variability, or lack thereof , 2013, Front. Comput. Neurosci..

[112]  Alexander S. Ecker,et al.  Neural system identification for large populations separating "what" and "where" , 2017, NIPS.

[113]  Olivier Marre,et al.  Features and functions of nonlinear spatial integration by retinal ganglion cells , 2012, Journal of Physiology-Paris.

[114]  Alexander S. Ecker,et al.  On the Structure of Neuronal Population Activity under Fluctuations in Attentional State , 2015, The Journal of Neuroscience.

[115]  Laurence Aitchison,et al.  With or without you: predictive coding and Bayesian inference in the brain , 2017, Current Opinion in Neurobiology.

[116]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[117]  Haim Sompolinsky,et al.  Implications of Neuronal Diversity on Population Coding , 2006, Neural Computation.

[118]  John P. Cunningham,et al.  Dynamical segmentation of single trials from population neural data , 2011, NIPS.

[119]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[120]  A. Pouget,et al.  Information-limiting correlations , 2014, Nature Neuroscience.

[121]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[122]  Byron M. Yu,et al.  Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex , 2016, PLoS Comput. Biol..

[123]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[124]  Albert Compte,et al.  Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT , 2015, Nature Communications.

[125]  John P. Cunningham,et al.  Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1 , 2016, PLoS Comput. Biol..

[126]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[127]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[128]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[129]  Hamed Rahmani Factor-Analysis Methods for Higher-Performance Neural Prostheses , 2015 .

[130]  Robert T. Knight,et al.  Encoding and Decoding Models in Cognitive Electrophysiology , 2017, Front. Syst. Neurosci..

[131]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[132]  Alexandre Pouget,et al.  Measuring Fisher Information Accurately in Correlated Neural Populations , 2015, PLoS Comput. Biol..

[133]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[134]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[135]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[136]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[137]  Richard D. Lange,et al.  Characterizing and interpreting the influence of internal variables on sensory activity , 2017, Current Opinion in Neurobiology.

[138]  N. C. Singh,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli , 2001 .

[139]  Mijung Park,et al.  Receptive Field Inference with Localized Priors , 2011, PLoS Comput. Biol..

[140]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[141]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[142]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[143]  Martine Hausberger,et al.  A rapid correlation method for the analysis of spectro-temporal receptive fields of auditory neurons , 1995, Journal of Neuroscience Methods.

[144]  M. Carandini,et al.  Cortical State Determines Global Variability and Correlations in Visual Cortex , 2015, The Journal of Neuroscience.

[145]  Konrad Paul Kording,et al.  Could a Neuroscientist Understand a Microprocessor? , 2016, bioRxiv.

[146]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[147]  Matthew R Whiteway,et al.  Revealing unobserved factors underlying cortical activity using a rectified latent variable model applied to neural population recordings , 2016, bioRxiv.

[148]  Yong Gu,et al.  Perceptual Learning Reduces Interneuronal Correlations in Macaque Visual Cortex , 2011, Neuron.

[149]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[150]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[151]  Hayaru Shouno,et al.  Analysis of function of rectified linear unit used in deep learning , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[152]  Yuan Zhao,et al.  Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains , 2016, Neural Computation.

[153]  J. Hérault,et al.  Réseau de neurones à synapses modifiables: décodage de messages sensoriels composites par apprentissage non supervisé et permanent , 1984 .

[154]  Byron M. Yu,et al.  Extracting Latent Structure From Multiple Interacting Neural Populations , 2014, NIPS.

[155]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[156]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[157]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[158]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[159]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[160]  Alexander S. Ecker,et al.  State Dependence of Noise Correlations in Macaque Primary Visual Cortex , 2014, Neuron.

[161]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[162]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[163]  Karl J. Friston,et al.  Distinct Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery , 2017, Scientific Reports.

[164]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[165]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[166]  Ravindra Khattree,et al.  Analysis of Multivariate and High‐Dimensional Data , 2015 .

[167]  Ryan P. Adams,et al.  Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.

[168]  E. Brown,et al.  General anesthesia and altered states of arousal: a systems neuroscience analysis. , 2011, Annual review of neuroscience.

[169]  G. Orban,et al.  The response variability of striate cortical neurons in the behaving monkey , 2004, Experimental Brain Research.

[170]  Liam Paninski,et al.  OnACID: Online Analysis of Calcium Imaging Data in Real Time , 2017, bioRxiv.

[171]  Jack L. Gallant,et al.  A deep convolutional energy model of V4 responses to natural movies , 2016 .

[172]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[173]  Scott W. Linderman,et al.  Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems , 2017, AISTATS.

[174]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[175]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[176]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[177]  Gustavo Deco,et al.  Stimulus-dependent variability and noise correlations in cortical MT neurons , 2013, Proceedings of the National Academy of Sciences.

[178]  M. Häusser,et al.  All-Optical Interrogation of Neural Circuits , 2015, The Journal of Neuroscience.

[179]  J. Duncan,et al.  Top-Down Activation of Shape-Specific Population Codes in Visual Cortex during Mental Imagery , 2009, The Journal of Neuroscience.

[180]  Alexandre Pouget,et al.  Origin of information-limiting noise correlations , 2015, Proceedings of the National Academy of Sciences.

[181]  Nathalie Japkowicz,et al.  Nonlinear Autoassociation Is Not Equivalent to PCA , 2000, Neural Computation.

[182]  Asohan Amarasingham,et al.  Ambiguity and nonidentifiability in the statistical analysis of neural codes , 2015, Proceedings of the National Academy of Sciences.

[183]  Eero P. Simoncelli,et al.  Attention stabilizes the shared gain of V4 populations , 2015, eLife.

[184]  L. Paninski,et al.  Inferring input nonlinearities in neural encoding models , 2008, Network.

[185]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[186]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[187]  Haim Sompolinsky,et al.  Nonlinear Population Codes , 2004, Neural Computation.

[188]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[189]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[190]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[191]  Colin W G Clifford,et al.  Adaptation Improves Neural Coding Efficiency Despite Increasing Correlations in Variability , 2013, The Journal of Neuroscience.

[192]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[193]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[194]  Eero P. Simoncelli,et al.  Partitioning neuronal variability , 2014, Nature Neuroscience.

[195]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[196]  Surya Ganguli,et al.  A theory of multineuronal dimensionality, dynamics and measurement , 2017, bioRxiv.

[197]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[198]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[199]  Wei Wu,et al.  A new look at state-space models for neural data , 2010, Journal of Computational Neuroscience.

[200]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.

[201]  B. Olshausen 20 Years of Learning About Vision: Questions Answered, Questions Unanswered, and Questions Not Yet Asked , 2013 .

[202]  Micah M. Murray,et al.  Top-down control and early multisensory processes: chicken vs. egg , 2015, Front. Integr. Neurosci..

[203]  M. Bear,et al.  Reward Timing in the Primary Visual Cortex , 2006, Science.

[204]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[205]  Ben Alderson-Day,et al.  Are Hallucinations Due to an Imbalance Between Excitatory and Inhibitory Influences on the Brain? , 2016, Schizophrenia bulletin.

[206]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[207]  Matthias Bethge,et al.  Bayesian Inference for Generalized Linear Models for Spiking Neurons , 2010, Front. Comput. Neurosci..

[208]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[209]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[210]  Chethan Pandarinath,et al.  LFADS - Latent Factor Analysis via Dynamical Systems , 2016, ArXiv.

[211]  Veronika Schöpf,et al.  ICA of fMRI Studies: New Approaches and Cutting Edge Applications , 2013, Front. Hum. Neurosci..