Randomized Kinodynamic Planning

The paper presents a state-space perspective on the kinodynamic planning problem, and introduces a randomized path planning technique that computes collision-free kinodynamic trajectories for high degree-of-freedom problems. By using a state space formulation, the kinodynamic planning problem is treated as a 2n-dimensional nonholonomic planning problem, derived from an n-dimensional configuration space. The state space serves the same role as the configuration space for basic path planning. The bases for the approach is the construction of a tree that attempts to rapidly and uniformly explore the state space, offering benefits that are similar to those obtained by successful randomized planning methods, but applies to a much broader class of problems. Some preliminary results are discussed for an implementation that determines the kinodynamic trajectories for hovercrafts and satellites in cluttered environments resulting in state spaces of up to twelve dimensions.

[1]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[2]  R. Larson,et al.  A survey of dynamic programming computational procedures , 1967, IEEE Transactions on Automatic Control.

[3]  Ira Sheldon Pohl,et al.  Bi-directional and heuristic search in path problems , 1969 .

[4]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[5]  D. Bertsekas Convergence of discretization procedures in dynamic programming , 1975 .

[6]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[7]  R. A. Mayo Relative Quaternion State Transition Relation , 1979 .

[8]  E. Angel,et al.  Principles of dynamic programming part 1 , 1980, Proceedings of the IEEE.

[9]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[10]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[11]  Kang G. Shin,et al.  Open-loop minimum-time control of mechanical manipulators and its application , 1984 .

[12]  John M. Hollerbach,et al.  Planning a minimum-time trajectories for robot arms , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[14]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[15]  John M. Hollerbach,et al.  Planning of Minimum- Time Trajectories for Robot Arms , 1986 .

[16]  Jean-Paul Laumond,et al.  Finding Collision-Free Smooth Trajectories for a Non-Holonomic Mobile Robot , 1987, IJCAI.

[17]  F. Chernousko,et al.  Time-optimal control for robotic manipulators , 1989 .

[18]  John F. Canny,et al.  Time-optimal trajectories for a robot manipulator: a provably good approximation algorithm , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[19]  John F. Canny,et al.  An exact algorithm for kinodynamic planning in the plane , 1990, SCG '90.

[20]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[21]  Bruce Randall Donald,et al.  Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators , 1990, SCG '90.

[22]  Gerardo Lafferriere,et al.  Motion planning for controllable systems without drift , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[23]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[24]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[25]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[26]  J. Sussmann,et al.  SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .

[27]  Jean-Daniel Boissonnat,et al.  Shortest paths of bounded curvature in the plane , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[28]  Bruce Randall Donald,et al.  Kinodynamic motion planning , 1993, JACM.

[29]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[30]  Sean Quinlan,et al.  Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[31]  Vipin Kumar,et al.  A parallel formulation of informed randomized search for robot motion planning problems , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[32]  Mark H. Overmars,et al.  Coordinated motion planning for multiple car-like robots using probabilistic roadmaps , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[33]  R. Murray,et al.  Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems , 1995 .

[34]  Roderic A. Grupen,et al.  A Hamiltonian framework for kinodynamic planning and control , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[35]  S. Shankar Sastry,et al.  Steering Three-Input Nonholonomic Systems: The Fire Truck Example , 1995, Int. J. Robotics Res..

[36]  Jaydev P. Desai,et al.  Continuous Motion Plans for Robotic Systems with Changing Dynamic Behavior , 1996 .

[37]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[38]  Steven M. LaValle,et al.  A game-theoretic framework for robot motion planning , 1996 .

[39]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[40]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[41]  Florent Lamiraux,et al.  On the expected complexity of random path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[42]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[43]  Hongyan Wang,et al.  Non-Uniform Discretization Approximations for Kinodynamic Motion Planning and its Applications , 1996 .

[44]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[45]  Vladimir J. Lumelsky,et al.  The Jogger's Problem: Control of Dynamics in Real-time Motion Planning , 1997, Autom..

[46]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[47]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[48]  Florent Lamiraux,et al.  Motion planning and control for Hilare pulling a trailer: experimental issues , 1997, Proceedings of International Conference on Robotics and Automation.

[49]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[50]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[51]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[52]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[53]  H. Struemper Motion Control for Nonholonomic Systems on Matrix Lie Groups , 1998 .

[54]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1998, IEEE Trans. Robotics Autom..

[55]  Pierre Bessière,et al.  The Ariadne's Clew Algorithm , 1993, J. Artif. Intell. Res..

[56]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[57]  Yong Yu,et al.  On sensor-based roadmap: a framework for motion planning for a manipulator arm in unknown environments , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[58]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[59]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[60]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[61]  S. L. Valle Numerical computation of optimal navigation functions on a simplicial complex , 1998 .

[62]  Leonidas J. Guibas,et al.  H-Walk: hierarchical distance computation for moving convex bodies , 1999, SCG '99.

[63]  Kevin M. Lynch,et al.  Controllability of a planar body with unilateral thrusters , 1999, IEEE Trans. Autom. Control..

[64]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[65]  Moëz Cherif Kinodynamic motion planning for all-terrain wheeled vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[66]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[67]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[68]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[69]  Sunil Kumar Agrawal,et al.  Trajectory planning of robots with dynamics and inequalities , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[70]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[71]  Jean-Claude Latombe,et al.  Kinodynamic motion planning amidst moving obstacles , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[72]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .