Randomized Kinodynamic Motion Planning with Moving Obstacles

This paper presents a novel randomized motion planner for robots that must achieve a specified goal under kinematic and/or dynamic motion constraints while avoiding collision with moving obstacles with known trajectories. The planner encodes the motion constraints on the robot with a control system and samples the robot's state × time space by picking control inputs at random and integrating its equations of motion. The result is a probabilistic roadmap of sampled state ×time points, called milestones, connected by short admissible trajectories. The planner does not precompute the roadmap; instead, for each planning query, it generates a new roadmap to connect an initial and a goal state×time point. The paper presents a detailed analysis of the planner's convergence rate. It shows that, if the state×time space satisfies a geometric property called expansiveness, then a slightly idealized version of our implemented planner is guaranteed to find a trajectory when one exists, with probability quickly converging to 1, as the number of milestones increases. Our planner was tested extensively not only in simulated environments, but also on a real robot. In the latter case, a vision module estimates obstacle motions just before planning starts. The planner is then allocated a small, fixed amount of time to compute a trajectory. If a change in the expected motion of the obstacles is detected while the robot executes the planned trajectory, the planner recomputes a trajectory on the fly. Experiments on the real robot led to several extensions of the planner in order to deal with time delays and uncertainties that are inherent to an integrated robotic system interacting with the physical world.

[1]  Jean Isère,et al.  Le fil d'Ariane , 1947 .

[2]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[3]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[4]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[5]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[6]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[7]  Jean-Paul Laumond,et al.  Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints , 1986, IAS.

[8]  Tomas Lozano-Perez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[10]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[11]  J. Latombe,et al.  On nonholonomic mobile robots and optimal maneuvering , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[12]  S. Sastry,et al.  Robot motion planning with nonholonomic constraints , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[13]  John F. Canny,et al.  Planning smooth paths for mobile robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[14]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[15]  Steven Dubowsky,et al.  On computing the global time-optimal motions of robotic manipulators in the presence of obstacles , 1991, IEEE Trans. Robotics Autom..

[16]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[17]  Thierry Fraichard,et al.  Dynamic trajectory planning with dynamic constraints: A 'state-time space' approach , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[18]  Henning Tolle,et al.  Motion planning with many degrees of freedom-random reflections at C-space obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Sean Quinlan,et al.  Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[20]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[21]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[22]  Tsai-Yen Li,et al.  Assembly maintainability study with motion planning , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[23]  Lydia E. Kavraki,et al.  Random networks in configuration space for fast path planning , 1994 .

[24]  Kikuo Fujimura,et al.  Time-minimum routes in time-dependent networks , 1995, IEEE Trans. Robotics Autom..

[25]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning (Extended Abstract). , 1995, Symposium on the Theory of Computing.

[26]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning , 1995, STOC '95.

[27]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[28]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[29]  J. Laumond,et al.  Multi-Level Path Planning for Nonholonomic Robots using Semi-Holonomic Subsystems , 1996 .

[30]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[31]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[32]  Philip M. Hubbard,et al.  Approximating polyhedra with spheres for time-critical collision detection , 1996, TOGS.

[33]  Florent Lamiraux,et al.  On the expected complexity of random path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[34]  Paolo Fiorini,et al.  Time optimal trajectory planning in dynamic environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[35]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[36]  Mark H. Overmars,et al.  Motion Planning for Carlike Robots Using a Probabilistic Learning Approach , 1997, Int. J. Robotics Res..

[37]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[38]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[39]  J. Latombe,et al.  Probabilistic Roadm Aps for Path Planning in High-dimensional Connguration Spaces , 1997 .

[40]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[41]  Lydia E. Kavraki,et al.  Capturing the Connectivity of High-Dimensional Geometric Spaces by Parallelizable Random Sampling Techniques , 1998, IPPS/SPDP Workshops.

[42]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[43]  J. Latombe,et al.  Randomized Query Processing in Robot Motion Planning , 1998 .

[44]  Thierry Fraichard,et al.  Trajectory planning in a dynamic workspace: a 'state-time space' approach , 1998, Adv. Robotics.

[45]  Dinesh Manocha,et al.  Spherical shell: a higher order bounding volume for fast proximity queries , 1998 .

[46]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[47]  Pierre Ferbach,et al.  A method of progressive constraints for nonholonomic motion planning , 1998, IEEE Trans. Robotics Autom..

[48]  Mark H. Overmars,et al.  Multilevel Path Planning for Nonholonomic Robots Using Semiholonomic Subsystems , 1998, Int. J. Robotics Res..

[49]  Jean-Paul Laumond,et al.  Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems , 1998, IEEE Trans. Robotics Autom..

[50]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[51]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[52]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[53]  David Hsu,et al.  Placing a robot manipulator amid obstacles for optimized execution , 1999, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470).

[54]  Thierry Siméon,et al.  Visibility based probabilistic roadmaps , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[55]  Vijay Kumar,et al.  Motion planning for cooperating mobile manipulators , 1999, J. Field Robotics.

[56]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[57]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[58]  Jean-Claude Latombe,et al.  Autonomous agents for real-time animation , 1999 .

[59]  Kamal K. Gupta,et al.  The kinematic roadmap: a motion planning based global approach for inverse kinematics of redundant robots , 1999, IEEE Trans. Robotics Autom..

[60]  Scott Alan Hutchinson,et al.  Toward real-time path planning in changing environments , 2000 .

[61]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[62]  Jean-Claude Latombe,et al.  Kinodynamic motion planning amidst moving obstacles , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[63]  David Hsu,et al.  Randomized single-query motion planning in expansive spaces , 2000 .

[64]  Stephen M. Rock,et al.  Motion planning for free-flying robots in dynamic and uncertain environments , 2001 .

[65]  Nancy M. Amato,et al.  Customizing PRM roadmaps at query time , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[66]  David Hsu,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002 .

[67]  William H. Press,et al.  Numerical recipes in C , 2002 .

[68]  Jean-Claude Latombe,et al.  On Delaying Collision Checking in PRM Planning: Application to Multi-Robot Coordination , 2002, Int. J. Robotics Res..

[69]  Pankaj K. Agarwal Range Searching , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..