Planning optimal paths for multiple robots on graphs

In this paper, we study the problem of optimal multi-robot path planning (MPP) on graphs. We propose two multiflow based integer linear programming (ILP) models that compute minimum last arrival time and minimum total distance solutions for our MPP formulation, respectively. The resulting algorithms from these ILP models are complete and guaranteed to yield true optimal solutions. In addition, our flexible framework can easily accommodate other variants of the MPP problem. Focusing on the time optimal algorithm, we evaluate its performance, both as a stand alone algorithm and as a generic heuristic for quickly solving large problem instances. Computational results confirm the effectiveness of our method.

[1]  Bartholomew O. Nnaji Theory of automatic robot assembly and programming , 1992 .

[2]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[3]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[4]  Nancy M. Amato,et al.  Behavior-based evacuation planning , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[6]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[7]  T. Murphey,et al.  Switching Rules for Decentralized Control with Simple Control Laws , 2007, 2007 American Control Conference.

[8]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[9]  G. Swaminathan Robot Motion Planning , 2006 .

[10]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  Pavel Surynek,et al.  A novel approach to path planning for multiple robots in bi-connected graphs , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  Gaurav S. Sukhatme,et al.  Constrained coverage for mobile sensor networks , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[13]  D A N I E L R A T N E R A N D M A N F R E D W A R M,et al.  The ( n 2-1 )-Puzzle and Related Relocation Problems , 2008 .

[14]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[15]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  David Silver,et al.  Cooperative Pathfinding , 2005, AIIDE.

[17]  Steven M. LaValle,et al.  Multi-agent Path Planning and Network Flow , 2012, WAFR.

[18]  Steven M. LaValle,et al.  Distance optimal formation control on graphs with a tight convergence time guarantee , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[20]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  G. Whelan,et al.  Cooperative search and rescue with a team of mobile robots , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[22]  Richard L. Francis,et al.  Network models for building evacuation , 1982 .

[23]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[24]  Alexander Zelinsky,et al.  A mobile robot exploration algorithm , 1992, IEEE Trans. Robotics Autom..

[25]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[26]  Malcolm Ross Kinsella Ryan Exploiting Subgraph Structure in Multi-Robot Path Planning , 2008, J. Artif. Intell. Res..

[27]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[28]  Richard E. Korf,et al.  Complete Algorithms for Cooperative Pathfinding Problems , 2011, IJCAI.

[29]  Srinivas Akella,et al.  Coordinating Multiple Droplets in Planar Array Digital Microfluidic Systems , 2005, Int. J. Robotics Res..

[30]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 1998, SCG '98.

[31]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[32]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[33]  Bruce Randall Donald,et al.  Moving furniture with teams of autonomous robots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[34]  Kostas E. Bekris,et al.  Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees , 2011, IJCAI.

[35]  Magnus Egerstedt,et al.  Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints , 2007, Mob. Networks Appl..

[36]  Daniela Rus,et al.  Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms , 2012, WAFR.

[37]  Pavel Surynek,et al.  An Optimization Variant of Multi-Robot Path Planning Is Intractable , 2010, AAAI.