Real-Time Motion Planning With Applications to Autonomous Urban Driving Citation

This paper describes a real-time motion planning algorithm, based on the rapidly-exploring random tree (RRT) approach, applicable to autonomous vehicles operating in an urban environment. Extensions to the standard RRT are predominantly motivated by: 1) the need to generate dynamically feasible plans in real-time; 2) safety requirements; 3) the constraints dictated by the uncertain operating (urban) environment. The primary novelty is in the use of closed-loop prediction in the framework of RRT. The proposed algorithm was at the core of the planning and control software for Team MIT’s entry for the 2007 DARPA Urban Challenge, where the vehicle demonstrated the ability to complete a 60 mile simulated military supply mission, while safely interacting with other autonomous and human driven vehicles.

[1]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[2]  Charles E. Thorpe,et al.  Integrated mobile robot control , 1991 .

[3]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[4]  T D Gillespie,et al.  Fundamentals of Vehicle Dynamics , 1992 .

[5]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Anthony Stentz Optimal and efficient path planning for partially-known environments , 1994 .

[7]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[8]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[9]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[11]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[12]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Jean-Claude Latombe,et al.  A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking , 2001, ISRR.

[14]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[15]  Vladimir J. Lumelsky,et al.  Classification of the Dubins set , 2001, Robotics Auton. Syst..

[16]  Reid G. Simmons,et al.  Approaches for heuristically biasing RRT growth , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[17]  M. Strandberg,et al.  Augmenting RRT-planners with local trees , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[18]  Steven M. LaValle,et al.  Steps toward derandomizing RRTs , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).

[19]  Steven M. LaValle,et al.  Incrementally reducing dispersion by increasing Voronoi bias in RRTs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  J. How,et al.  Receding horizon path planning with implicit safety guarantees , 2004, Proceedings of the 2004 American Control Conference.

[21]  Piotr Indyk,et al.  Nearest Neighbors in High-Dimensional Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[22]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Emilio Frazzoli,et al.  On Multiple UAV Routing with Stochastic Targets: Performance Bounds and Algorithms , 2005 .

[24]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[26]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[27]  Alonzo Kelly,et al.  Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots , 2007, Int. J. Robotics Res..

[28]  Jonathan P. How,et al.  Performance and Lyapunov Stability of a Nonlinear Path Following Guidance Method , 2007 .

[29]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Jonathan P. How,et al.  Motion Planning in Complex Environments using Closed-loop Prediction , 2008 .

[31]  Luke Fletcher,et al.  A perception-driven autonomous urban vehicle , 2008 .