Uncertainty, generalization, and neural representation of relevant variables for decision making

[1]  Christopher DiMattina,et al.  Detecting natural occlusion boundaries using local cues. , 2012, Journal of vision.

[2]  David J Ostry,et al.  Modifiability of generalization in dynamics learning. , 2007, Journal of neurophysiology.

[3]  Wei Ji Ma,et al.  Signal detection theory, uncertainty, and Poisson-like population codes , 2010, Vision Research.

[4]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[5]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[6]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[7]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[8]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[9]  Hugo L. Fernandes,et al.  Differential Representations of Prior and Likelihood Uncertainty in the Human Brain , 2012, Current Biology.

[10]  Ulrik R. Beierholm,et al.  Probability Matching as a Computational Strategy Used in Perception , 2010, PLoS Comput. Biol..

[11]  D. Wolpert,et al.  Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manipulation , 2010, Current Biology.

[12]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[13]  J. Kalaska,et al.  Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. , 2005, Journal of neurophysiology.

[14]  Eero P. Simoncelli,et al.  Implicit embedding of prior probabilities in optimally efficient neural populations , 2012, 1209.5006.

[15]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[17]  Konrad Paul Kording,et al.  Statistics of Natural Movements Are Reflected in Motor Errors , 2009, Journal of neurophysiology.

[18]  M. Segraves,et al.  The relationship of monkey frontal eye field activity to saccade dynamics. , 1993, Journal of neurophysiology.

[19]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[20]  R Shadmehr,et al.  Spatial Generalization from Learning Dynamics of Reaching Movements , 2000, The Journal of Neuroscience.

[21]  Jeffrey D Schall,et al.  Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. , 2009, Journal of neurophysiology.

[22]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[23]  Kurt A. Thoroughman,et al.  Rapid Reshaping of Human Motor Generalization , 2005, The Journal of Neuroscience.

[24]  Konrad Paul Kording,et al.  The statistics of natural hand movements , 2008, Experimental Brain Research.

[25]  E. Bizzi,et al.  Consolidation in human motor memory , 1996, Nature.

[26]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[27]  E. Vaadia,et al.  Preparatory activity in motor cortex reflects learning of local visuomotor skills , 2003, Nature Neuroscience.

[28]  John W. Krakauer,et al.  Independent learning of internal models for kinematic and dynamic control of reaching , 1999, Nature Neuroscience.

[29]  Emery N. Brown,et al.  Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields , 2012, PloS one.

[30]  G. Orban,et al.  Searching for a salient target involves frontal regions. , 2010, Cerebral cortex.

[31]  Konrad P. Körding,et al.  Uncertainty of Feedback and State Estimation Determines the Speed of Motor Adaptation , 2009, Front. Comput. Neurosci..

[32]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[33]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[34]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[35]  Paul Cisek,et al.  Kinematics and kinetics of multijoint reaching in nonhuman primates. , 2003, Journal of neurophysiology.

[36]  J. Gold,et al.  How mechanisms of perceptual decision-making affect the psychometric function , 2013, Progress in Neurobiology.

[37]  Michael I. Jordan,et al.  Generalization to Local Remappings of the Visuomotor Coordinate Transformation , 1996, The Journal of Neuroscience.

[38]  J. Schall Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. , 1991, Journal of neurophysiology.

[39]  M. Azuma,et al.  Prefrontal neuronal activity during gazing at a light spot in the monkey , 1977, Brain Research.

[40]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[41]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[42]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[43]  M. Segraves,et al.  Acute activation and inactivation of macaque frontal eye field with GABA-related drugs. , 1995, Journal of neurophysiology.

[44]  Aapo Hyvärinen,et al.  Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior , 2002, NIPS.

[45]  D. Wolpert,et al.  Temporal and amplitude generalization in motor learning. , 1998, Journal of neurophysiology.

[46]  Konrad Paul Kording,et al.  Measuring Generalization of Visuomotor Perturbations in Wrist Movements Using Mobile Phones , 2011, PloS one.

[47]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[48]  N. P. Bichot,et al.  Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. , 2005, Journal of neurophysiology.

[49]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[50]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[51]  Christoph Kayser,et al.  Fixations in natural scenes: Interaction of image structure and image content , 2006, Vision Research.

[52]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[53]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[54]  Michael S Landy,et al.  Combining Priors and Noisy Visual Cues in a Rapid Pointing Task , 2006, The Journal of Neuroscience.

[55]  A. Aertsen,et al.  Dynamic Encoding of Movement Direction in Motor Cortical Neurons , 2009, The Journal of Neuroscience.

[56]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[57]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[58]  J D Schall,et al.  Dynamic dissociation of visual selection from saccade programming in frontal eye field. , 2001, Journal of neurophysiology.

[59]  Geoffrey M. Underwood,et al.  Modeling eye movements in visual agnosia with a saliency map approach : Bottom – up guidance or top – down strategy ? , 2011 .

[60]  L. Itti,et al.  Quantifying center bias of observers in free viewing of dynamic natural scenes. , 2009, Journal of vision.

[61]  Sean P. MacEvoy,et al.  Macaque V1 activity during natural vision: effects of natural scenes and saccades. , 2008, Journal of neurophysiology.

[62]  R. J. Beers,et al.  Motor Learning Is Optimally Tuned to the Properties of Motor Noise , 2009, Neuron.

[63]  J. Kalaska,et al.  Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action , 2005, Neuron.

[64]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[65]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[66]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[67]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[68]  Jeremy M Wolfe,et al.  Modeling the role of parallel processing in visual search , 1990, Cognitive Psychology.

[69]  C. Shea,et al.  Specificity and variability of practice. , 1990, Research quarterly for exercise and sport.

[70]  R. Shadmehr,et al.  Adaptation and generalization in acceleration-dependent force fields , 2006, Experimental Brain Research.

[71]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[72]  Konrad Kording,et al.  Annals of the New York Academy of Sciences Bayesian Models: the Structure of the World, Uncertainty, Behavior, and the Brain , 2022 .

[73]  Si Wu,et al.  Sequential Bayesian Decoding with a Population of Neurons , 2003, Neural Computation.

[74]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[75]  Daniel A. Braun,et al.  Facilitation of learning induced by both random and gradual visuomotor task variation , 2011, Journal of neurophysiology.

[76]  J. Krakauer,et al.  Learning not to generalize: modular adaptation of visuomotor gain. , 2010, Journal of neurophysiology.

[77]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[78]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[79]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[80]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[81]  R. Wurtz,et al.  Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. , 2001, Journal of neurophysiology.

[82]  Xiao-Jing Wang,et al.  Synaptic computation underlying probabilistic inference , 2010, Nature Neuroscience.

[83]  Richard B. Ivry,et al.  Context-dependent generalization , 2013, Front. Hum. Neurosci..

[84]  Jordan A Taylor,et al.  Feedback-dependent generalization. , 2013, Journal of neurophysiology.

[85]  D P Munoz,et al.  Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field , 2000, The Journal of Neuroscience.

[86]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[88]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[89]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[90]  Robert A. Marino,et al.  Free viewing of dynamic stimuli by humans and monkeys. , 2009, Journal of vision.

[91]  Yali Amit,et al.  Encoding of Coordinated Grasp Trajectories in Primary Motor Cortex , 2010, The Journal of Neuroscience.

[92]  Peter Dayan,et al.  Doubly Distributional Population Codes: Simultaneous Representation of Uncertainty and Multiplicity , 2003, Neural Computation.

[93]  Konrad Paul Kording,et al.  Learning Priors for Bayesian Computations in the Nervous System , 2010, PloS one.

[94]  Takashi R Sato,et al.  Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field , 2001, Neuron.

[95]  Eero P. Simoncelli,et al.  Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons , 2002 .

[96]  Vincent S. Huang,et al.  Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models , 2011, Neuron.

[97]  Konrad Paul Kording,et al.  Causal Inference in Multisensory Perception , 2007, PloS one.

[98]  Maurice A. Smith,et al.  Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations , 2012, Journal of Neuroscience.

[99]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[100]  M. Ernst,et al.  The statistical determinants of adaptation rate in human reaching. , 2008, Journal of vision.

[101]  K. Turano,et al.  Oculomotor strategies for the direction of gaze tested with a real-world activity , 2003, Vision Research.

[102]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[104]  M. Segraves,et al.  Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. , 1999, Journal of neurophysiology.

[105]  M. Hayhoe,et al.  In what ways do eye movements contribute to everyday activities? , 2001, Vision Research.

[106]  D. Hoffman,et al.  Muscle and movement representations in the primary motor cortex. , 1999, Science.

[107]  A. Georgopoulos,et al.  The motor cortex and the coding of force. , 1992, Science.

[108]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  Margaret E. Sereno,et al.  Shape selectivity in primate frontal eye field. , 2008, Journal of neurophysiology.

[110]  Adam N. Phillips,et al.  Predictive activity in macaque frontal eye field neurons during natural scene searching. , 2010, Journal of neurophysiology.

[111]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[112]  L. Stone,et al.  Effects of Prior Information and Reward on Oculomotor and Perceptual Choices , 2008, The Journal of Neuroscience.

[113]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[114]  N. C. Singh,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli , 2001 .

[115]  Lucia Melloni,et al.  Interaction between bottom-up saliency and top-down control: how saliency maps are created in the human brain. , 2012, Cerebral cortex.

[116]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[117]  Philip N. Sabes,et al.  How Each Movement Changes the Next: An Experimental and Theoretical Study of Fast Adaptive Priors in Reaching , 2011, The Journal of Neuroscience.

[118]  Michael N. Shadlen,et al.  Probabilistic nature of time perception , 2010 .

[119]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[120]  B Willmore,et al.  A Comparison of Natural-Image-Based Models of Simple-Cell Coding , 2000, Perception.

[121]  A B Schwartz,et al.  Motor cortical representation of speed and direction during reaching. , 1999, Journal of neurophysiology.

[122]  Paul R. Schrater,et al.  Grasping Objects with Environmentally Induced Position Uncertainty , 2009, PLoS Comput. Biol..

[123]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[124]  Bernt Schiele,et al.  International Journal of Computer Vision manuscript No. (will be inserted by the editor) Semantic Modeling of Natural Scenes for Content-Based Image Retrieval , 2022 .

[125]  M. Segraves,et al.  Primate frontal eye field activity during natural scanning eye movements. , 1994, Journal of neurophysiology.

[126]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[127]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[128]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[129]  C. Koch,et al.  Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. , 2008, Journal of vision.

[130]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[131]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[132]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[133]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[134]  Hagai Bergman,et al.  Acquisition and generalization of visuomotor transformations by nonhuman primates , 2005, Experimental Brain Research.

[135]  Tirin Moore,et al.  Influence and Limitations of Popout in the Selection of Salient Visual Stimuli by Area V4 Neurons , 2009, The Journal of Neuroscience.

[136]  Hidehiko Komatsu,et al.  A grid system and a microsyringe for single cell recording , 1988, Journal of Neuroscience Methods.

[137]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[138]  Laurent Itti,et al.  Interesting objects are visually salient. , 2008, Journal of vision.

[139]  Richard B. Ivry,et al.  Flexible Cognitive Strategies during Motor Learning , 2011, PLoS Comput. Biol..

[140]  R. Wurtz,et al.  Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. , 2000, Journal of neurophysiology.

[141]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[142]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[143]  Konrad P. Kording,et al.  Generalization of Stochastic Visuomotor Rotations , 2012, PloS one.

[144]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[145]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[146]  Kazuyuki Aihara,et al.  A Bayesian Model of Sensory Adaptation , 2011, PloS one.

[147]  J. L. Conway,et al.  Deficits in eye movements following frontal eye-field and superior colliculus ablations. , 1980, Journal of neurophysiology.

[148]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[149]  R. Shadmehr Generalization as a behavioral window to the neural mechanisms of learning internal models. , 2004, Human movement science.

[150]  Konrad Paul Kording,et al.  Estimating the sources of motor errors for adaptation and generalization , 2008, Nature Neuroscience.

[151]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[152]  Christof Koch,et al.  Visual Saliency Computations: Mechanisms, Constraints, and the Effect of Feedback , 2010, The Journal of Neuroscience.

[153]  Nir Vulkan An Economist's Perspective on Probability Matching , 2000 .

[154]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[155]  Edward J. Tehovnik,et al.  Reversible inactivation of macaque frontal eye field , 1997, Experimental Brain Research.

[156]  Reza Shadmehr,et al.  Quantifying Generalization from Trial-by-Trial Behavior of Adaptive Systems that Learn with Basis Functions: Theory and Experiments in Human Motor Control , 2003, The Journal of Neuroscience.

[157]  Emilio Bizzi,et al.  Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys , 1968, Experimental Brain Research.

[158]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[159]  Christopher R Fetsch,et al.  Neural correlates of reliability-based cue weighting during multisensory integration , 2011, Nature Neuroscience.

[160]  C Ghez,et al.  Learning of Visuomotor Transformations for Vectorial Planning of Reaching Trajectories , 2000, The Journal of Neuroscience.

[161]  Konrad P. Körding,et al.  Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects , 2011, PLoS Comput. Biol..

[162]  József Fiser,et al.  Coding of Natural Scenes in Primary Visual Cortex , 2003, Neuron.

[163]  Olivier White,et al.  Use-Dependent and Error-Based Learning of Motor Behaviors , 2010, The Journal of Neuroscience.

[164]  Martina Mittlböck,et al.  Pseudo R-squared measures for Poisson regression models with over- or underdispersion , 2003, Comput. Stat. Data Anal..

[165]  Thomas L. Griffiths,et al.  One and Done? Optimal Decisions From Very Few Samples , 2014, Cogn. Sci..

[166]  Hiroaki Gomi,et al.  Effect of visuomotor-map uncertainty on visuomotor adaptation. , 2012, Journal of neurophysiology.

[167]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[168]  Christof Koch,et al.  Learning a saliency map using fixated locations in natural scenes. , 2011, Journal of vision.

[169]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[170]  Paul R. Schrater,et al.  How Haptic Size Sensations Improve Distance Perception , 2011, PLoS Comput. Biol..

[171]  G. Stelmach,et al.  Adaptation to gradual as compared with sudden visuo-motor distortions , 1997, Experimental Brain Research.

[172]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[173]  Y. Amit,et al.  Encoding of Movement Fragments in the Motor Cortex , 2007, The Journal of Neuroscience.

[174]  J. Bisley,et al.  A pure salience response in posterior parietal cortex. , 2011, Cerebral cortex.

[175]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[176]  Konrad Paul Kording,et al.  Decision Theory: What "Should" the Nervous System Do? , 2007, Science.

[177]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[178]  Charless C. Fowlkes,et al.  Natural-Scene Statistics Predict How the Figure–Ground Cue of Convexity Affects Human Depth Perception , 2010, The Journal of Neuroscience.

[179]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[180]  J. Kalaska,et al.  Simultaneous encoding of multiple potential reach directions in dorsal premotor cortex. , 2002, Journal of neurophysiology.

[181]  Ali Borji,et al.  Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study , 2013, IEEE Transactions on Image Processing.

[182]  W. Gaissmaier,et al.  The smart potential behind probability matching , 2008, Cognition.

[183]  P. König,et al.  Differences of monkey and human overt attention under natural conditions , 2006, Vision Research.

[184]  R. Andersen,et al.  Posterior parietal cortex. , 1989, Reviews of oculomotor research.

[185]  Jody C Culham,et al.  Visual salience dominates early visuomotor competition in reaching behavior. , 2011, Journal of vision.

[186]  J. Gallant,et al.  Goal-Related Activity in V4 during Free Viewing Visual Search Evidence for a Ventral Stream Visual Salience Map , 2003, Neuron.

[187]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[188]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[189]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[190]  L. Paninski,et al.  Inferring input nonlinearities in neural encoding models , 2008, Network.

[191]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[192]  Aapo Hyvärinen,et al.  Bubbles: a unifying framework for low-level statistical properties of natural image sequences. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[193]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[194]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[195]  Konrad Paul Kording,et al.  Processing of complex stimuli and natural scenes in the visual cortex , 2004, Current Opinion in Neurobiology.

[196]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.