The Provable Virtue of Laziness in Motion Planning

The Lazy Shortest Path (LazySP) class consists of motion-planning algorithms that only evaluate edges along shortest paths between the source and target. These algorithms were designed to minimize the number of edge evaluations in settings where edge evaluation dominates the running time of the algorithm; but how close to optimal are LazySP algorithms in terms of this objective? Our main result is an analytical upper bound, in a probabilistic model, on the number of edge evaluations required by LazySP algorithms; a matching lower bound shows that these algorithms are asymptotically optimal in the worst case.

[1]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[2]  Kris Hauser,et al.  Lazy collision checking in asymptotically-optimal motion planning , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Siddhartha S. Srinivasa,et al.  Densification strategies for anytime motion planning over large dense roadmaps , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[6]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[7]  Siddhartha S. Srinivasa,et al.  Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles , 2019, ICAPS.

[8]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[9]  Siddhartha S. Srinivasa,et al.  Pareto-optimal search over configuration space beliefs for anytime motion planning , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[11]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Dan Halperin,et al.  Asymptotically-optimal Motion Planning using lower bounds on cost , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[14]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[15]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[16]  Siddhartha S. Srinivasa,et al.  A Unifying Formalism for Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-First Search over Paths with Edge Selectors , 2016, ICAPS.

[17]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[18]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Andrew Coles,et al.  Proceedings International Conference on Automated Planning and Scheduling, ICAPS , 2014, ICAPS 2014.

[21]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .