Smooth path planning by using visibility graph-like method

To achieve smooth motion of car-like robots, it is necessary to generate paths that satisfy the following conditions: maximum curvature, maximum curvature derivative, and curvature continuity. Another requirement is that human operators can manipulate the robots with ease. In this paper, a path expression methodology consisting of line segments, circular arcs and clothoid arcs is presented. In addition, a method of global path generation with a visibility graph is proposed. To establish this method, the following steps are proposed: (a) the arrangement of subgoals (middle points) and (b) the construction of the graph for path generation. By using the proposed method, the paths were shortened 14% on average.

[1]  Leonidas J. Guibas,et al.  Visibility of disjoint polygons , 2005, Algorithmica.

[2]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[3]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[4]  Subhash Suri,et al.  Curvature-Constrained Shortest Paths in a Convex Polygon , 2002, SIAM J. Comput..

[5]  Bernard Chazelle,et al.  Triangulating a simple polygon in linear time , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[6]  Jon M. Kleinberg,et al.  On-line search in a simple polygon , 1994, SODA '94.

[7]  Sergey Bereg,et al.  Curvature-bounded traversals of narrow corridors , 2005, Symposium on Computational Geometry.

[8]  Sung Yong Shin,et al.  New competitive strategies for searching in unknown star-shaped polygons , 1997, SCG '97.

[9]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[10]  Rolf Klein,et al.  The Polygon Exploration Problem , 2001, SIAM J. Comput..

[11]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[12]  Rolf Klein Walking an Unknown Street with Bounded Detour , 1991, Comput. Geom..

[13]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[14]  Jean-Daniel Boissonnat,et al.  An Algorithm for Computing a Convex and Simple Path of Bounded Curvature in a Simple Polygon , 2002, Algorithmica.

[15]  Yutaka Kanayama,et al.  Trajectory generation for mobile robots , 1984 .

[16]  Baruch Schieber,et al.  Navigating in Unfamiliar Geometric Terrain , 1997, SIAM J. Comput..

[17]  Amitava Datta,et al.  Competitive searching in a generalized street , 1994, SCG '94.

[18]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[19]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[20]  Alejandro López-Ortiz,et al.  Lower Bounds for Streets and Generalized Streets , 2001, Int. J. Comput. Geom. Appl..

[21]  Pankaj K. Agarwal,et al.  Motion planning for a steering-constrained robot through moderate obstacles , 1995, STOC '95.

[22]  Kazuo Tanie,et al.  Trajectory Design and Control of a Wheel-type Mobile Robot Using B-spline Curve , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[23]  Katsushi Ikeuchi,et al.  Trajectory generation with curvature constraint based on energy minimization , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[24]  John F. Canny,et al.  Planning smooth paths for mobile robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[25]  Subir Kumar Ghosh,et al.  Optimal On-line Algorithms for Walking with Minimum Number of Turns in Unknown Streets , 1997, Comput. Geom..

[26]  Rolf Klein,et al.  Searching for the kernel of a polygon—a competitive strategy , 1995, SCG '95.

[27]  Thierry Fraichard,et al.  Smooth path planning for cars , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Tak Wah Lam,et al.  An on-line algorithm for navigating in unknown environment , 1993, Int. J. Comput. Geom. Appl..

[29]  Howie Choset,et al.  Sensor-based Coverage of Unknown Environments: Incremental Construction of Morse Decompositions , 2002, Int. J. Robotics Res..

[30]  Der-Tsai Lee Proximity and reachability in the plane. , 1978 .

[31]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[32]  Rolf Klein,et al.  A competitive strategy for learning a polygon , 1997, SODA '97.

[33]  Rolf Klein,et al.  An Optimal Competitive Strategy for Walking in Streets , 1999, STACS.

[34]  Thierry Fraichard,et al.  Continuous-curvature path planning for car-like vehicles , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[35]  Alejandro López-Ortiz,et al.  Searching and on-line recognition of star-shaped polygons , 2003, Inf. Comput..

[36]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[37]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[38]  Aníbal Ollero,et al.  Mobile robot path planning for fine-grained and smooth path spcification , 1995, J. Field Robotics.

[39]  Gordon T. Wilfong,et al.  Planning constrained motion , 1988, STOC '88.

[40]  J. O'Rourke Art gallery theorems and algorithms , 1987 .