On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages

We extend our study of Motion Planning via Manifold Samples (MMS), a general algorithmic framework that combines geometric methods for the exact and complete analysis of low-dimensional configuration spaces with sampling-based approaches that are appropriate for higher dimensions. The framework explores the configuration space by taking samples that are low-dimensional manifolds of the configuration space capturing its connectivity much better than isolated point samples. The scheme is particularly suitable for applications in manufacturing, such as assembly planning, where typically motion planning needs to be carried out in very tight quarters. The contributions of this paper are as follows: (i) We present a recursive application of MMS in a six-dimensional configuration space, enabling the coordination of two polygonal robots translating and rotating amidst polygonal obstacles. In the adduced experiments for the more demanding test cases MMS clearly outperforms Probabilistic Roadmaps (PRM), with over 40-fold speedup in a six-dimensional coordination-tight setting. (ii) A probabilistic completeness proof for the case of MMS with samples that are affine subspaces. (iii) A closer examination of the test cases reveals that MMS has, in comparison to standard sampling-based algorithms, a significant advantage in scenarios containing high-dimensional narrow passages. This provokes a novel characterization of narrow passages, which attempts to capture their dimensionality, an attribute that had been (to a large extent) unattended in previous definitions.

[1]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[2]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[3]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[4]  Vijay Kumar,et al.  Decentralized Feedback Controllers for Multiagent Teams in Environments With Obstacles , 2008, IEEE Transactions on Robotics.

[5]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[6]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[7]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[8]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[9]  Nancy M. Amato,et al.  UOBPRM: A uniformly distributed obstacle-based PRM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Dan Halperin,et al.  Motion Planning via Manifold Samples , 2011, Algorithmica.

[11]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[12]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[13]  J. Davenport A "Piano Movers" Problem. , 1986 .

[14]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[15]  Micha Sharir,et al.  On Translational Motion Planning of a Convex Polyhedron in 3-Space , 1997, SIAM J. Comput..

[16]  Kostas E. Bekris,et al.  OOPS for Motion Planning: An Online, Open-source, Programming System , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles , 1988, Geometry and Robotics.

[18]  Kurt Mehlhorn,et al.  Arrangements on Parametric Surfaces I: General Framework and Infrastructure , 2010, Math. Comput. Sci..

[19]  Ron Wein Exact and Efficient Construction of Planar Minkowski Sums Using the Convolution Method , 2006, ESA.

[20]  Dan Halperin,et al.  Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..

[21]  Jean-Claude Latombe,et al.  Geometric Reasoning About Mechanical Assembly , 1994, Artif. Intell..

[22]  Dan Halperin,et al.  CGAL Arrangements and Their Applications - A Step-by-Step Guide , 2012, Geometry and Computing.

[23]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[24]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[25]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  James J. Kuffner,et al.  Effective sampling and distance metrics for 3D rigid body path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[27]  Jean-Claude Latombe,et al.  A General Framework for Assembly Planning: The Motion Space Approach , 1998, SCG '98.

[28]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[29]  Dinesh Manocha,et al.  D-Plan: Efficient Collision-Free Path Computation for Part Removal and Disassembly , 2008 .

[30]  Mike Stilman,et al.  Task constrained motion planning in robot joint space , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[32]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[33]  Dan Halperin,et al.  On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages , 2012, WAFR.

[34]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[35]  G. Swaminathan Robot Motion Planning , 2006 .

[36]  Micha Sharir,et al.  A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment , 1996, Discret. Comput. Geom..

[37]  Jean-Paul Laumond,et al.  Linear dimensionality reduction in random motion planning , 2011, Int. J. Robotics Res..

[38]  Jim Law,et al.  Review of "The boost graph library: user guide and reference manual by Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine." Addison-Wesley 2002. , 2003, SOEN.

[39]  Jyh-Ming Lien,et al.  Hybrid Motion Planning Using Minkowski Sums , 2008, Robotics: Science and Systems.

[40]  Dan Halperin,et al.  Arrangements on Parametric Surfaces II: Concretizations and Applications , 2010, Math. Comput. Sci..

[41]  Howie Choset,et al.  Probabilistic path planning for multiple robots with subdimensional expansion , 2012, 2012 IEEE International Conference on Robotics and Automation.

[42]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[43]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[44]  Dan Halperin,et al.  Hybrid Motion Planning: Coordinating Two Discs Moving among Polygonal Obstacles in the Plane , 2002, WAFR.

[45]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[46]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning , 1995, STOC '95.

[47]  Elisha Sacks,et al.  RRT path planner with 3DOF local planner , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[48]  Lydia E. Kavraki,et al.  Partitioning a Planar Assembly Into Two Connected Parts is NP-Complete , 1995, Inf. Process. Lett..

[49]  Lydia E. Kavraki,et al.  Generalizing the analysis of PRM , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[50]  Peter Hachenberger,et al.  Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces , 2007, Algorithmica.

[51]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[52]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[53]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).