Learning geometric and lighting priors from natural images

Understanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods.

[1]  Ko Nishino,et al.  Shape and Reflectance from Natural Illumination , 2012, ECCV.

[2]  In-So Kweon,et al.  One-day outdoor photometric stereo via skylight estimation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Katsushi Ikeuchi,et al.  Camera Spectral Sensitivity and White Balance Estimation from Sky Images , 2013, International Journal of Computer Vision.

[4]  Edward H. Adelson,et al.  Shape estimation in natural illumination , 2011, CVPR 2011.

[5]  Alexei A. Efros,et al.  Photo clip art , 2007, ACM Trans. Graph..

[6]  Adrien Bousseau,et al.  Multiview Intrinsic Images of Outdoors Scenes with an Application to Relighting , 2015, ACM Trans. Graph..

[7]  Krista A. Ehinger,et al.  Recognizing scene viewpoint using panoramic place representation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Tony F. Chan,et al.  Outdoor photometric stereo , 2013, IEEE International Conference on Computational Photography (ICCP).

[9]  Katsushi Ikeuchi,et al.  Refining Outdoor Photometric Stereo Based on Sky Model , 2013, IPSJ Trans. Comput. Vis. Appl..

[10]  Hans Schwerdtfeger,et al.  Introduction to linear algebra and the theory of matrices , 1950 .

[11]  Martin Klaudiny,et al.  Error analysis of photometric stereo with colour lights , 2014, Pattern Recognit. Lett..

[12]  Frédo Durand,et al.  A physically-based night sky model , 2001, SIGGRAPH.

[13]  Yannick Hold-Geoffroy,et al.  What Is a Good Day for Outdoor Photometric Stereo? , 2015, 2015 IEEE International Conference on Computational Photography (ICCP).

[14]  Roberto Cipolla,et al.  Overcoming Shadows in 3-Source Photometric Stereo , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Vittorio Ferrari,et al.  Video Temporal Alignment for Object Viewpoint , 2016, ACCV.

[16]  Zhe Wu,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Richard Kittler,et al.  Luminance distribution characteristics of homogeneous skies: a measurement and prediction strategy , 1985 .

[18]  Alexei A. Efros,et al.  What Do the Sun and the Sky Tell Us About the Camera? , 2010, International Journal of Computer Vision.

[19]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[20]  S. Zucker,et al.  Shape-from-shading on a cloudy day , 1994 .

[21]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Alexei A. Efros,et al.  Estimating the Natural Illumination Conditions from a Single Outdoor Image , 2012, International Journal of Computer Vision.

[23]  Andrew Zisserman,et al.  Planar grouping for automatic detection of vanishing lines and points , 2000, Image Vis. Comput..

[24]  Jitendra Malik,et al.  Intrinsic Scene Properties from a Single RGB-D Image , 2013, CVPR.

[25]  Berthold K. P. Horn Obtaining shape from shading information , 1989 .

[26]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Mary J. Bravo,et al.  Image forensic analyses that elude the human visual system , 2010, Electronic Imaging.

[28]  Yannick Hold-Geoffroy,et al.  A Perceptual Measure for Deep Single Image Camera Calibration , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Oskar Elek,et al.  Real-time spectral scattering in large-scale natural participating media , 2010, SCCG.

[30]  Bolei Zhou,et al.  Places: A 10 Million Image Database for Scene Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[32]  Roberto Cipolla,et al.  PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[33]  Jean-François Lalonde,et al.  Lighting Estimation in Outdoor Image Collections , 2014, 2014 2nd International Conference on 3D Vision.

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[36]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[37]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[38]  Erik Reinhard,et al.  Image-based material editing , 2005, SIGGRAPH '05.

[39]  Daniel Cohen-Or,et al.  Micro perceptual human computation for visual tasks , 2012, TOGS.

[40]  Yasuyuki Matsushita,et al.  Deep Photometric Stereo Network , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[41]  Katsushi Ikeuchi,et al.  Photometric Stereo Using Internet Images , 2014, 2014 2nd International Conference on 3D Vision.

[42]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  J. Michalsky,et al.  All-weather model for sky luminance distribution—Preliminary configuration and validation , 1993 .

[44]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[45]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[46]  Warren W. Esty,et al.  The Box-Percentile Plot , 2003 .

[47]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[48]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[49]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[50]  Ian D. Reid,et al.  Single View Metrology , 2000, International Journal of Computer Vision.

[51]  Peter Shirley,et al.  A practical analytic model for daylight , 1999, SIGGRAPH.

[52]  Hideo Yamashita,et al.  Display Method of the Sky Color Taking into Account Multiple Scattering , 2000 .

[53]  Horst Bunke,et al.  On error analysis for surface normals determined by photometric stereo , 1991, Signal Process..

[54]  A. Cantor Optics of the atmosphere--Scattering by molecules and particles , 1978, IEEE Journal of Quantum Electronics.

[55]  Yasuyuki Matsushita,et al.  Photometric Stereo in the Wild , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[56]  P. Cavanagh The artist as neuroscientist , 2005, Nature.

[57]  Stephen J. Maybank,et al.  On plane-based camera calibration: A general algorithm, singularities, applications , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[58]  Alfred M. Bruckstein,et al.  Integrability disambiguates surface recovery in two-image photometric stereo , 1992, International Journal of Computer Vision.

[59]  Yinda Zhang,et al.  FrameBreak: Dramatic Image Extrapolation by Guided Shift-Maps , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[61]  Sanja Fidler,et al.  Find your way by observing the sun and other semantic cues , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[62]  David J. Kriegman,et al.  Photometric stereo with non-parametric and spatially-varying reflectance , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[64]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[65]  Ko Nishino,et al.  Reflectance and Illumination Recovery in the Wild , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Ming-Hsuan Yang,et al.  Sky is not the limit , 2016, ACM Trans. Graph..

[67]  Martial Hebert,et al.  Data-Driven 3D Primitives for Single Image Understanding , 2013, 2013 IEEE International Conference on Computer Vision.

[68]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, CVPR.

[69]  Yannick Hold-Geoffroy,et al.  Deep Outdoor Illumination Estimation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Alexei A. Efros,et al.  Learning Data-Driven Reflectance Priors for Intrinsic Image Decomposition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[72]  H. H. Kimball,et al.  SKY-BRIGHTNESS AND DAYLIGHT-ILLUMINATION MEASUREMENTS. , 1921 .

[73]  Mike J. Chantler,et al.  On optimal light configurations in photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[74]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH.

[76]  Paul E. Debevec,et al.  Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 1998, SIGGRAPH '08.

[77]  Antonio Criminisi,et al.  Shape from Texture: Homogeneity Revisited , 2000, BMVC.

[78]  Philip R. Goode,et al.  Earthshine observations of the Earth's reflectance , 2001 .

[79]  Ronen Basri,et al.  Photometric stereo with general, unknown lighting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[80]  Wojciech Matusik,et al.  What do color changes reveal about an outdoor scene? , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[81]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[82]  Szymon Rusinkiewicz,et al.  Time‐Lapse Photometric Stereo and Applications , 2014, Comput. Graph. Forum.

[83]  P. Bretagnon,et al.  Planetary Theories in rectangular and spherical variables: VSOP87 solution. , 1988 .

[84]  Derek Hoiem,et al.  Recovering the spatial layout of cluttered rooms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[85]  Noah Snavely,et al.  Robust Global Translations with 1DSfM , 2014, ECCV.

[86]  Scott Workman,et al.  Horizon Lines in the Wild , 2016, BMVC.

[87]  Jiuai Sun,et al.  Examining the uncertainty of the recovered surface normal in three light photometric stereo , 2007, Image Vis. Comput..

[88]  Mario Fritz,et al.  Deep Reflectance Maps , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[89]  Yannick Hold-Geoffroy,et al.  x-Hour Outdoor Photometric Stereo , 2015, 2015 International Conference on 3D Vision.

[90]  Kalyan Sunkavalli,et al.  Automatic Scene Inference for 3D Object Compositing , 2014, ACM Trans. Graph..

[91]  Alexander Wilkie,et al.  Adding a Solar-Radiance Function to the Hošek-Wilkie Skylight Model , 2013, IEEE Computer Graphics and Applications.

[92]  Tomoyuki Nishita,et al.  Display of the earth taking into account atmospheric scattering , 1993, SIGGRAPH.

[93]  Scott Workman,et al.  A Pot of Gold: Rainbows as a Calibration Cue , 2014, ECCV.

[94]  Jiajun Wu,et al.  MarrNet: 3D Shape Reconstruction via 2.5D Sketches , 2017, NIPS.

[95]  Hans-Peter Seidel,et al.  Relighting objects from image collections , 2009, CVPR 2009.

[96]  Claudio Cusano,et al.  Single and Multiple Illuminant Estimation Using Convolutional Neural Networks , 2015, IEEE Transactions on Image Processing.

[97]  Qian Chen,et al.  Camera Calibration with Two Arbitrary Coplanar Circles , 2004, ECCV.

[98]  Steven M. Seitz,et al.  The Visual Turing Test for Scene Reconstruction , 2013, 2013 International Conference on 3D Vision.

[99]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[101]  Michel Antunes,et al.  Unsupervised Intrinsic Calibration from a Single Frame Using a "Plumb-Line" Approach , 2013, 2013 IEEE International Conference on Computer Vision.

[102]  O. Chum,et al.  Detection, Rectification and Segmentation of Coplanar Repeated Patterns , 2014, CVPR 2014.

[103]  Werner Purgathofer,et al.  A Critical Review of the Preetham Skylight Model , 2007 .

[104]  Simon Fuhrmann,et al.  Photometric stereo for outdoor webcams , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[105]  Noah Snavely,et al.  Reasoning about Photo Collections using Models of Outdoor Illumination , 2014, BMVC.

[106]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[107]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[109]  Hans-Peter Seidel,et al.  Physically-based simulation of twilight phenomena , 2005, TOGS.

[110]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[111]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[112]  Kenny Mitchell,et al.  From Faces to Outdoor Light Probes , 2018, Comput. Graph. Forum.

[113]  Ersin Yumer,et al.  Learning to predict indoor illumination from a single image , 2017, ACM Trans. Graph..

[114]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[115]  Carsten Rother,et al.  A New Approach for Vanishing Point Detection in Architectural Environments , 2000, BMVC.

[116]  Ersin Yumer,et al.  Neural Face Editing with Intrinsic Image Disentangling , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Alexander Wilkie,et al.  An analytic model for full spectral sky-dome radiance , 2012, ACM Trans. Graph..

[118]  K. R. Ramakrishnan,et al.  High Dynamic Range Imaging , 2013, 2013 International Conference on Communication Systems and Network Technologies.

[119]  Roland Siegwart,et al.  A Toolbox for Easily Calibrating Omnidirectional Cameras , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[120]  Robert Pless,et al.  Heliometric Stereo: Shape from Sun Position , 2012, ECCV.

[121]  Seungyong Lee,et al.  Automatic Upright Adjustment of Photographs With Robust Camera Calibration , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Donald P. Greenberg,et al.  A framework for the experimental comparison of solar and skydome illumination , 2014, ACM Trans. Graph..

[123]  Fabrice Neyret,et al.  Precomputed Atmospheric Scattering , 2008, Comput. Graph. Forum.

[124]  Ye Yu,et al.  PVNN: A Neural Network Library for Photometric Vision , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[125]  S. Darula,et al.  CIE GENERAL SKY STANDARD DEFINING LUMINANCE DISTRIBUTIONS , 2002 .

[126]  Noah Snavely,et al.  Shadow Detection and Sun Direction in Photo Collections , 2015, 2015 International Conference on 3D Vision.

[127]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[128]  Alexander Wilkie,et al.  Predicting Sky Dome Appearance on Earth-like Extrasolar Worlds , 2013, SCCG.

[129]  George Drettakis,et al.  Perception of perspective distortions in image-based rendering , 2013, ACM Trans. Graph..

[130]  Martin Wattenberg,et al.  SmoothGrad: removing noise by adding noise , 2017, ArXiv.

[131]  Connor Greenwell,et al.  DEEPFOCAL: A method for direct focal length estimation , 2015, 2015 IEEE International Conference on Image Processing (ICIP).