Chapter 45 Computing equilibria for two-person games

This paper is a self-contained survey of algorithms for computing Nash equilibria of two-person games. The games may be given in strategic form or extensive form. The classical Lemke-Howson algorithm finds one equilibrium of a bimatrix game, and provides an elementary proof that a Nash equilibrium exists. It can be given a strong geometric intuition using graphs that show the subdivision of the players' mixed strategy sets into best-response regions. The Lemke-Howson algorithm is presented with these graphs, as well as algebraically in terms of complementary pivoting. Degenerate games require a refinement of the algorithm based on lexicographic perturbations. Commonly used definitions of degenerate games are shown as equivalent. The enumeration of all equilibria is expressed as the problem of finding matching vertices in pairs of polytopes. Algorithms for computing simply stable equilibria and perfect equilibria are explained. The computation of equilibria for extensive games is difficult for larger games since the reduced strategic form may be exponentially large compared to the game tree. If the players have perfect recall, the sequence form of the extensive game is a strategic description that is more suitable for computation. In the sequence form, pure strategies of a player are replaced by sequences of choices along a play in the game. The sequence form has the same size as the game tree, and can be used for computing equilibria with the same methods as the strategic form. The paper concludes with remarks on theoretical and practical issues of concern to these computational approaches.

[1]  Bernhard von Stengel,et al.  Fast algorithms for finding randomized strategies in game trees , 1994, STOC '94.

[2]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[3]  Dolf Talman,et al.  An Algorithmic Approach toward the Tracing Procedure for Bi-matrix Games , 1999 .

[4]  Michael J. Todd,et al.  Bimatrix games—an addendum , 1978, Math. Program..

[5]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[6]  Vijaykumar Aggarwal,et al.  On the generation of all equilibrium points for bimatrix games through the Lemke—Howson Algorithm , 1973, Math. Program..

[7]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[8]  M. Jansen Maximal nash subsets for bimatrix games , 1981 .

[9]  Pierre Hansen,et al.  Enumeration of All Extreme Equilibria of Bimatrix Games , 1996, SIAM J. Sci. Comput..

[10]  D. Vermeulen,et al.  On the computation of stable sets and strictly perfect equilibria , 2001 .

[11]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[12]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[13]  Harlan D. Mills,et al.  Equilibrium Points in Finite Games , 1960 .

[14]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[15]  Avi Pfeffer,et al.  Representations and Solutions for Game-Theoretic Problems , 1997, Artif. Intell..

[16]  D. Pallaschke,et al.  Game Theory and Related Topics , 1980 .

[17]  C. B. Millham,et al.  On nash subsets of bimatrix games , 1974 .

[18]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[19]  A. McLennan,et al.  Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria , 1999 .

[20]  M. Bastian Another note on bimatrix games , 1976, Math. Program..

[21]  B. Curtis Eaves,et al.  Polymatrix Games with Joint Constraints , 1973 .

[22]  Peter Sudhölter,et al.  Implementing the modified LH algorithm , 1991 .

[23]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[24]  J. Tomlin Robust implementation of Lemke's method for the linear complementarity problem , 1978 .

[25]  H. Keiding On the Maximal Number of Nash Equilibria in ann × nBimatrix Game , 1997 .

[26]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[27]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[28]  E. Kohlberg,et al.  Foundations of Strategic Equilibrium , 1996 .

[29]  J. Howson Equilibria of Polymatrix Games , 1972 .

[30]  B. Stengel,et al.  Efficient Computation of Behavior Strategies , 1996 .

[31]  William F. Lucas,et al.  An Overview of the Mathematical Theory of Games , 1972 .

[32]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[33]  A Charnes,et al.  Constrained Games and Linear Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[35]  B. Eaves The Linear Complementarity Problem , 1971 .

[36]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[37]  Dries Vermeulen,et al.  The reduced form of a game , 1998, Eur. J. Oper. Res..

[38]  B. M. Mukhamediev,et al.  The solution of bilinear programming problems and finding the equilibrium situations in bimatrix games , 1978 .

[39]  Sergiu Hart,et al.  Games in extensive and strategic forms , 1992 .

[40]  M. Shubik,et al.  On the Number of Nash Equilibria in a Bimatrix Game , 1994 .

[41]  C. B. Millham,et al.  On nash subsets and mobility chains in bimatrix games , 1976 .

[42]  Robert Wilson Computing Equilibria of Two-Person Games from the Extensive Form , 1972 .

[43]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[44]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[45]  Eitan Zemel,et al.  The Complexity of Eliminating Dominated Strategies , 1993, Math. Oper. Res..

[46]  D. Knuth,et al.  A note on strategy elimination in bimatrix games , 1988 .

[47]  Bernhard von Stengel,et al.  New Maximal Numbers of Equilibria in Bimatrix Games , 1999, Discret. Comput. Geom..

[48]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[49]  N. Vorob’ev Equilibrium Points in Bimatrix Games , 1958 .

[50]  Michael J. Todd,et al.  Comments on a Note by Aggarwal , 1976 .

[51]  Bernhard von Stengel,et al.  Computing Normal Form Perfect Equilibria for Extensive Two-Person Games , 2002 .

[52]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[53]  D. Koller,et al.  The complexity of two-person zero-sum games in extensive form , 1992 .

[54]  D. Koller,et al.  Finding mixed strategies with small supports in extensive form games , 1996 .

[55]  Immanuel M. Bomze,et al.  Detecting all evolutionarily stable strategies , 1992 .

[56]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[57]  O. Mangasarian Equilibrium Points of Bimatrix Games , 1964 .

[58]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[59]  L. Shapley A note on the Lemke-Howson algorithm , 1974 .

[60]  Dolf Talman,et al.  A procedure for finding Nash equilibria in bi-matrix games , 1991, ZOR Methods Model. Oper. Res..

[61]  Robert Wilson Computing Simply Stable Equilibria , 1992 .

[62]  Nathan Linial,et al.  Game-theoretic aspects of computing , 1994 .

[63]  T. Raghavan,et al.  Non-zero-sum two-person games , 2002 .

[64]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[65]  Jean-François Mertens Stable Equilibria - A Reformulation: Part I. Definition and Basic Properties , 1989, Math. Oper. Res..

[66]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[67]  Peter Borm,et al.  On strictly perfect sets , 1994 .

[68]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[69]  Antonius Henricus van den Elzen Adjustment Processes for Exchange Economies and Noncooperative Games , 1993 .

[70]  Robert W. Rosenthal,et al.  Bayesian Equilibria of Finite Two-Person Games with Incomplete Information , 1974 .

[71]  Jean-François Mertens Stable Equilibria - A Reformulation. Part II. Discussion of the Definition, and Further Results , 1991, Math. Oper. Res..

[72]  Reinhard Selten,et al.  Evolutionary stability in extensive two-person games - correction and further development , 1988 .

[73]  Stef Tijs,et al.  On the structure of the set of perfect equilibria in bimatrix games , 1993 .

[74]  Todd R. Kaplan,et al.  A Program for Finding Nash Equilibria , 1993 .

[75]  R. McKelvey,et al.  Computation of equilibria in finite games , 1996 .

[76]  A. J. Vermeulen,et al.  On the set of (perfect) equilibria of a bimatrix game , 1994 .

[77]  D. Koller,et al.  Efficient Computation of Equilibria for Extensive Two-Person Games , 1996 .

[78]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[79]  Eitan Zemel,et al.  On the order of eliminating dominated strategies , 1990 .

[80]  H W Kuhn,et al.  AN ALGORITHM FOR EQUILIBRIUM POINTS IN BIMATRIX GAMES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[81]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .