Control of Rotational Dynamics for Ground and Aerial Behavior

This paper proposes a physics-based framework to control rolling, flipping and other behaviors with significant rotational components. The proposed technique is a general approach for guiding coordinated action that can be layered over existing control architectures through the purposeful regulation of specific whole-body features. Namely, we apply control for rotation through the specification and execution of specific desired `rotation indices' for whole-body orientation, angular velocity and angular momentum control and highlight the use of the angular excursion as a means for whole-body rotation control. We account for the stylistic components of behaviors through reference posture control. The novelty of the described work includes control over behaviors with considerable rotational components, both on the ground and in the air as well as a number of characteristics useful for general control, such as flight planning with inertia modeling, compliant posture tracking, and contact control planning.

[1]  Sung-Hee Lee,et al.  Reaction Mass Pendulum (RMP): An explicit model for centroidal angular momentum of humanoid robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, ACM Trans. Graph..

[3]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[4]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[5]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[6]  C. Karen Liu,et al.  Stable Proportional-Derivative Controllers , 2011, IEEE Computer Graphics and Applications.

[7]  Zoran Popovic,et al.  Optimal gait and form for animal locomotion , 2009, ACM Trans. Graph..

[8]  Marie-Paule Cani,et al.  Modal Locomotion: Animating Virtual Characters with Natural Vibrations , 2009, Comput. Graph. Forum.

[9]  Peng Zhao,et al.  User interfaces for interactive control of physics-based 3D characters , 2005, I3D '05.

[10]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[11]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[12]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[13]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[14]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[15]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[16]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[17]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, SIGGRAPH 2010.

[18]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[19]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[20]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[21]  Marko B. Popovic,et al.  Angular momentum regulation during human walking: biomechanics and control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[22]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[23]  K. Wampler,et al.  Optimal gait and form for animal locomotion , 2009, SIGGRAPH 2009.

[24]  C. Karen Liu,et al.  Momentum-based parameterization of dynamic character motion , 2004, SCA '04.

[25]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[26]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[27]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[28]  Aaron Hertzmann,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, SIGGRAPH 2010.

[29]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[30]  Petros Faloutsos,et al.  Flipping with physics: motion editing for acrobatics , 2007, SCA '07.

[31]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[32]  Frédo Durand,et al.  Linear Bellman combination for control of character animation , 2009, SIGGRAPH 2009.

[33]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[34]  Tianjia Shao,et al.  Sampling-based contact-rich motion control , 2010, SIGGRAPH 2010.

[35]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[36]  Nancy S. Pollard,et al.  Direct Control of Simulated Nonhuman Characters , 2011, IEEE Computer Graphics and Applications.

[37]  Victor B. Zordan,et al.  Goal-directed stepping with momentum control , 2010, SCA '10.

[38]  Marko B. Popovic,et al.  Zero spin angular momentum control: definition and applicability , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[39]  Baining Guo,et al.  Terrain runner , 2012, ACM Trans. Graph..

[40]  Taesoo Kwon,et al.  Control systems for human running using an inverted pendulum model and a reference motion capture sequence , 2010, SCA '10.

[41]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[42]  Sehoon Ha,et al.  Falling and landing motion control for character animation , 2012, ACM Trans. Graph..

[43]  Kenny Erleben,et al.  Velocity-based shock propagation for multibody dynamics animation , 2007, TOGS.

[44]  A. Karpathy,et al.  Locomotion skills for simulated quadrupeds , 2011, ACM Trans. Graph..