Semi-Markov Process Based Localization Using Radar in Dynamic Environments

Automotive localization in urban environment faces natural long-term changes of the surroundings. In this work, a robust Monte-Carlo based localization is presented. Robustness is achieved through a stochastic analysis of previous observations of the area of interest. The model uses a grid-based Markov chain to instantly model changes. An extension of this model by a Lévy process allows statements about reliability and prediction for each cell of the grid. Experiments with a vehicle equipped with four short range radars show the localization accuracy performance improvement in a dynamic environment.

[1]  Jens Klappstein,et al.  Automotive radar gridmap representations , 2015, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[2]  Christian Laugier,et al.  Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application , 2006, Int. J. Robotics Res..

[3]  Gaurav S. Sukhatme,et al.  Towards Mapping Dynamic Environments , 2003 .

[4]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[5]  J. Medhi,et al.  Stochastic Processes , 1982 .

[6]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[7]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[8]  Jari Saarinen,et al.  Independent Markov chain occupancy grid maps for representation of dynamic environment , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[10]  Wolfram Burgard,et al.  Occupancy Grid Models for Robot Mapping in Changing Environments , 2012, AAAI.

[11]  Andreas Birk,et al.  Merging Occupancy Grid Maps From Multiple Robots , 2006, Proceedings of the IEEE.

[12]  Kurt Konolige,et al.  g 2 o: A general Framework for (Hyper) Graph Optimization , 2011 .

[13]  Gordon Wyeth,et al.  Multiple map hypotheses for planning and navigating in non-stationary environments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Julius Ziegler,et al.  Making Bertha Drive—An Autonomous Journey on a Historic Route , 2014, IEEE Intelligent Transportation Systems Magazine.

[15]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[16]  Ba-Ngu Vo,et al.  Robotic Navigation and Mapping with Radar , 2012 .

[17]  Wolfram Burgard,et al.  Temporary maps for robust localization in semi-static environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Ulrich Hofmann,et al.  Fusion of occupancy grid mapping and model based object tracking for driver assistance systems using laser and radar sensors , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[19]  Kai Oliver Arras,et al.  Place-dependent people tracking , 2011, Int. J. Robotics Res..

[20]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[21]  N. Shephard,et al.  Basics of Levy processes , 2012 .

[22]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[23]  Daniel Fink A Compendium of Conjugate Priors , 1997 .

[24]  Gian Diego Tipaldi,et al.  Place-dependent People Tracking Place-dependent People Tracking , 2011 .

[25]  Volker Willert,et al.  Grid mapping in dynamic road environments: Classification of dynamic cell hypothesis via tracking , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Klaus C. J. Dietmayer,et al.  Clustering improved grid map registration using the normal distribution transform , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).