Unconventional Information Processing Systems , Novel Hardware : A Tour d ’ Horizon

This report provides a wide-angle survey on computational paradigms which have a possible bearing on the development of unconventional computational substrates and hardware devices. Such unconvential substrates and devices have some properties that alienate them from the classical Turing model of computation. Among other challenging characteristics, they are non-digital, unclocked, low-precision, exhibit static and dynamic parameter drift, and may have limited lifetime. Such properties are shared with biological computing systems – brains, but not only brains – , so this survey includes ideas and insights from neuroscience and the natural computing field.

[1]  W. J. Poppelbaum,et al.  Stochastic computing elements and systems , 1967, AFIPS '67 (Fall).

[2]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[3]  E M Harth,et al.  Brain functions and neural dynamics. , 1970, Journal of theoretical biology.

[4]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[5]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[6]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[7]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[9]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[10]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[11]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[12]  R. Stengel,et al.  Stochastic robustness of linear control systems , 1990 .

[13]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[14]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[15]  K. Aihara,et al.  Chaotic neural networks , 1990 .

[16]  W. Fontana,et al.  Algorithmic chemistry: A model for functional self-organization , 1990 .

[17]  Mario Markus,et al.  Nonlinear wave processes in excitable media , 1991 .

[18]  Robert F. Stengel Intelligent failure-tolerant control , 1991 .

[19]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[20]  Richard Granger,et al.  A cortical model of winner-take-all competition via lateral inhibition , 1992, Neural Networks.

[21]  Vadim I. Utkin,et al.  Sliding mode control design principles and applications to electric drives , 1993, IEEE Trans. Ind. Electron..

[22]  Dipankar Dasgupta,et al.  An Overview of Artificial Immune Systems and Their Applications , 1993 .

[23]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[24]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[25]  L. Steels The Artificial Life Roots of Artificial Intelligence , 1993, Artificial Life.

[26]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[27]  Jeffrey O. Kephart,et al.  A biologically inspired immune system for computers , 1994 .

[28]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[29]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[30]  Athanasios Gavrielides,et al.  Using neural networks for controlling chaos , 1994, Optics & Photonics.

[31]  Christopher G. Langton,et al.  Artificial Life , 2019, Philosophical Posthumanism.

[32]  Kazuyuki Aihara,et al.  Chaotic simulated annealing by a neural network model with transient chaos , 1995, Neural Networks.

[33]  Dante R. Chialvo,et al.  Generic excitable dynamics on a two-dimensional map , 1995 .

[34]  Kwang Y. Lee,et al.  Diagonal recurrent neural networks for dynamic systems control , 1995, IEEE Trans. Neural Networks.

[35]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[36]  Ian C. Parmee,et al.  The Ant Colony Metaphor for Searching Continuous Design Spaces , 1995, Evolutionary Computing, AISB Workshop.

[37]  M. Boden The Philosophy of Artificial Life , 1996 .

[38]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[39]  Kenneth Steiglitz,et al.  When Can Solitons Compute? , 1996, Complex Syst..

[40]  John E. Hunt,et al.  Learning using an artificial immune system , 1996 .

[41]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[42]  Panagiotis Tzionas,et al.  Collision-free path planning for a diamond-shaped robot using two-dimensional cellular automata , 1997, IEEE Trans. Robotics Autom..

[43]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[44]  Lars Folke Olsen,et al.  Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behaviour: Albert Goldbeter. Cambridge University Press, Cambridge, 1996. $99.95 (cloth), 605 + xxiv pp , 1997 .

[45]  C. Adami,et al.  Introduction To Artificial Life , 1997, IEEE Trans. Evol. Comput..

[46]  Jacques Gautrais,et al.  Rank order coding , 1998 .

[47]  Walter J. Freeman,et al.  Biologically Modeled Noise Stabilizing Neurodynamics for Pattern Recognition , 1998 .

[48]  T Natschläger,et al.  Spatial and temporal pattern analysis via spiking neurons. , 1998, Network.

[49]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[50]  W L Ditto,et al.  Computing with distributed chaos. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Gheorghe Paun,et al.  On the Power of Membrane Computing , 1999, J. Univers. Comput. Sci..

[52]  Stephanie Forrest,et al.  Architecture for an Artificial Immune System , 2000, Evolutionary Computation.

[53]  J Timmis,et al.  An artificial immune system for data analysis. , 2000, Bio Systems.

[54]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[55]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[56]  Doyle,et al.  Highly optimized tolerance: robustness and design in complex systems , 2000, Physical review letters.

[57]  Andrew M. Tyrrell,et al.  Immunotronics: Hardware Fault Tolerance Inspired by the Immune System , 2000, ICES.

[58]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[59]  F. Liljeros,et al.  Spontaneous group formation in the seceder model. , 2000, Physical review letters.

[60]  M. Castro,et al.  An Algorithm for Robot Path Planning with Cellular Automata , 2000, ACRI.

[61]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[62]  John S. McCaskill,et al.  Open Problems in Artificial Life , 2000, Artificial Life.

[63]  J. Leo van Hemmen,et al.  Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials , 2000, Neural Computation.

[64]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[65]  Di Paolo,et al.  Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions , 2000 .

[66]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Arnaud Delorme,et al.  Networks of integrate-and-fire neuron using rank order coding A: How to implement spike time dependent Hebbian plasticity , 2001, Neurocomputing.

[68]  Henry Markram,et al.  An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing , 2001, Neural Computation.

[69]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[70]  Takashi Ikegami,et al.  Artificial Chemistry: Computational Studies on the Emergence of Self-Reproducing Units , 2001, ECAL.

[71]  Wolfgang Banzhaf,et al.  Evolving Control Metabolisms for a Robot , 2001, Artificial Life.

[72]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[73]  N. Rulkov Regularization of synchronized chaotic bursts. , 2000, Physical review letters.

[74]  Wulfram Gerstner,et al.  Coding properties of spiking neurons: reverse and cross-correlations , 2001, Neural Networks.

[75]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[76]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[77]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[78]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[79]  W. Gerstner,et al.  Chapter 12 A framework for spiking neuron models: The spike response model , 2001 .

[80]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[82]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[83]  K Steiglitz,et al.  Information transfer via cascaded collisions of vector solitons. , 2001, Optics letters.

[84]  John Doyle,et al.  Complexity and robustness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  K. Passino,et al.  Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors , 2002 .

[86]  Gregg H. Gunsch,et al.  An artificial immune system architecture for computer security applications , 2002, IEEE Trans. Evol. Comput..

[87]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[88]  F Marchese A directional diffusion algorithm on cellular automata for robot path-planning , 2002, Future Gener. Comput. Syst..

[89]  Sander M. Bohte,et al.  Error-backpropagation in temporally encoded networks of spiking neurons , 2000, Neurocomputing.

[90]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[91]  Dezhe Z Jin,et al.  Fast computation with spikes in a recurrent neural network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[93]  Nikolai F Rulkov,et al.  Modeling of spiking-bursting neural behavior using two-dimensional map. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[95]  Tim J. Hutton,et al.  Evolvable Self-Replicating Molecules in an Artificial Chemistry , 2002, Artificial Life.

[96]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[97]  Kenneth Steiglitz,et al.  Computing with Solitons: A Review and Prospectus , 2002, Collision-Based Computing.

[98]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[99]  Katsuhiko Mori,et al.  Convolutional spiking neural network model for robust face detection , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[100]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[101]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[102]  Petros Koumoutsakos,et al.  Optimization based on bacterial chemotaxis , 2002, IEEE Trans. Evol. Comput..

[103]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[104]  Eve Marder,et al.  Modeling stability in neuron and network function: the role of activity in homeostasis. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[105]  William L. Ditto,et al.  Chaos computing: implementation of fundamental logical gates by chaotic elements , 2002 .

[106]  Zhou Ji,et al.  Artificial immune system (AIS) research in the last five years , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[107]  M. Bedau Artificial life: organization, adaptation and complexity from the bottom up , 2003, Trends in Cognitive Sciences.

[108]  Gal Chechik,et al.  Spike-Timing-Dependent Plasticity and Relevant Mutual Information Maximization , 2003, Neural Computation.

[109]  Jonathan Timmis,et al.  Artificial immune systems as a novel soft computing paradigm , 2003, Soft Comput..

[110]  F. Azuaje Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[111]  Albert Y. Zomaya,et al.  Artificial life techniques for reporting cell planning in mobile computing , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[112]  Wolfgang Maass,et al.  Computation with spiking neurons , 2003 .

[113]  H. Seung,et al.  Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission , 2003, Neuron.

[114]  Adam Kepecs,et al.  Information encoding and computation with spikes and bursts , 2003, Network.

[115]  Chrisantha Fernando,et al.  Pattern Recognition in a Bucket , 2003, ECAL.

[116]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[117]  László Tóth,et al.  Time encoding and perfect recovery of bandlimited signals , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[118]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[119]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[120]  Xiaohui Xie,et al.  Learning in neural networks by reinforcement of irregular spiking. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[122]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[123]  Jonathan Timmis,et al.  Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm , 2004, Genetic Programming and Evolvable Machines.

[124]  J. Nagumo,et al.  On a response characteristic of a mathematical neuron model , 1972, Kybernetik.

[125]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[126]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[127]  Wulfram Gerstner,et al.  Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns , 1993, Biological Cybernetics.

[128]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[129]  Phil Husbands,et al.  Evolving Plastic Neural Controllers stabilized by Homeostatic Mechanisms for Adaptation to a Perturbation , 2004 .

[130]  Hywel T. P. Williams,et al.  Homeostatic plasticity in recurrent neural networks , 2004 .

[131]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[132]  J. Stelling,et al.  Robustness properties of circadian clock architectures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[133]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[134]  Nikolai F. Rulkov,et al.  Subthreshold oscillations in a map-based neuron model , 2004, q-bio/0406007.

[135]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[136]  Robert M. Miura,et al.  Membrane Resonance and Stochastic Resonance Modulate Firing Patterns of Thalamocortical Neurons , 2004, Journal of Computational Neuroscience.

[137]  Jean-Pascal Pfister,et al.  Spike-timing Dependent Plasticity and Mutual Information Maximization for a Spiking Neuron Model , 2004, NIPS.

[138]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[139]  J. Stelling Mathematical models in microbial systems biology. , 2004, Current opinion in microbiology.

[140]  Johannes Schemmel,et al.  Edge of Chaos Computation in Mixed-Mode VLSI - A Hard Liquid , 2004, NIPS.

[141]  Ying-Cheng Lai,et al.  Attack vulnerability of scale-free networks due to cascading breakdown. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[142]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[143]  Bruce J. MacLennan,et al.  Natural computation and non-Turing models of computation , 2004, Theor. Comput. Sci..

[144]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[145]  Kenneth Steiglitz,et al.  Signal Standardization in Collision-based Soliton Computing , 2004, Int. J. Unconv. Comput..

[146]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[147]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[148]  Robert A. Legenstein,et al.  What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? , 2005, Neural Computation.

[149]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[150]  Georgi S. Medvedev,et al.  Reduction of a model of an excitable cell to a one-dimensional map , 2005 .

[151]  Boris T. Polyak,et al.  Stabilizing Chaos with Predictive Control , 2005 .

[152]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[153]  Jochen J. Steil,et al.  Analyzing the weight dynamics of recurrent learning algorithms , 2005, Neurocomputing.

[154]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[155]  Peter Tiño,et al.  Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons , 2005, ICNC.

[156]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[157]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[158]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[159]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[160]  Melanie Mitchell,et al.  Computation in Cellular Automata: A Selected Review , 2005, Non-standard Computation.

[161]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[162]  Gheorghe Paun,et al.  Introduction to Membrane Computing , 2006, Applications of Membrane Computing.

[163]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[164]  Johannes J. Letzkus,et al.  Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location , 2006, The Journal of Neuroscience.

[165]  Yasuhiro Suzuki,et al.  Investigation of tritrophic interactions in an ecosystem using abstract chemistry , 2006, Artificial Life and Robotics.

[166]  Andrew Adamatzky,et al.  Computing in Spiral Rule Reaction-Diffusion Hexagonal Cellular Automaton , 2006, Complex Syst..

[167]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[168]  Riccardo Zecchina,et al.  Learning by message-passing in networks of discrete synapses , 2005, Physical review letters.

[169]  D. Dasgupta,et al.  Advances in artificial immune systems , 2006, IEEE Computational Intelligence Magazine.

[170]  Leandro Nunes de Castro,et al.  Fundamentals of Natural Computing - Basic Concepts, Algorithms, and Applications , 2006, Chapman and Hall / CRC computer and information science series.

[171]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[172]  Kasper Støy,et al.  Using cellular automata and gradients to control self-reconfiguration , 2006, Robotics Auton. Syst..

[173]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[174]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[175]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[176]  Hiroyuki Iizuka,et al.  Toward Spinozist Robotics: Exploring the Minimal Dynamics of Behavioral Preference , 2007, Adapt. Behav..

[177]  Razvan V. Florian,et al.  Reinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neural Computation.

[178]  Albert Y. Zomaya,et al.  Artificial life techniques for load balancing in computational grids , 2007, J. Comput. Syst. Sci..

[179]  Tetsuya Asai,et al.  A Single-Electron Reaction-Diffusion Device for Computation of a Voronoi Diagram , 2007, Int. J. Unconv. Comput..

[180]  Sudeshna Sinha,et al.  Chaos computing: ideas and implementations , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[181]  Sander M. Bohte,et al.  Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity , 2007, Neural Computation.

[182]  Zengqiang Chen,et al.  New Chaotic PSO-Based Neural Network Predictive Control for Nonlinear Process , 2007, IEEE Transactions on Neural Networks.

[183]  Markus Diesmann,et al.  Spike-Timing-Dependent Plasticity in Balanced Random Networks , 2007, Neural Computation.

[184]  Leandro Nunes de Castro,et al.  Fundamentals of natural computing: an overview , 2007 .

[185]  Jürgen Schmidhuber,et al.  Training Recurrent Networks by Evolino , 2007, Neural Computation.

[186]  Marco Tomassini,et al.  Performance and Robustness of Cellular Automata Computation on Irregular Networks , 2007, Adv. Complex Syst..

[187]  Tim J. Hutton,et al.  Evolvable Self-Reproducing Cells in a Two-Dimensional Artificial Chemistry , 2007, Artificial Life.

[188]  Gordon Pipa,et al.  2007 Special Issue: Fading memory and time series prediction in recurrent networks with different forms of plasticity , 2007 .

[189]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[190]  V I Nekorkin,et al.  Chaotic oscillations in a map-based model of neural activity. , 2007, Chaos.

[191]  Johannes J. Letzkus,et al.  Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity , 2007, Trends in Neurosciences.

[192]  Jason Noble,et al.  Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks , 2007, Biosyst..

[193]  Peter Dittrich,et al.  Chemical Organisation Theory , 2007, Bulletin of mathematical biology.

[194]  Andrew Adamatzky,et al.  Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium , 2007 .

[195]  A. Wit,et al.  SPATIAL PATTERNS AND SPATIOTEMPORAL DYNAMICS IN CHEMICAL SYSTEMS , 2007 .

[196]  Benjamin Schrauwen,et al.  Compact hardware for real-time speech recognition using a Liquid State Machine , 2007, 2007 International Joint Conference on Neural Networks.

[197]  Robert Glenn Stockwell,et al.  A basis for efficient representation of the S-transform , 2007, Digit. Signal Process..

[198]  R. Zecchina,et al.  Efficient supervised learning in networks with binary synapses , 2007, Proceedings of the National Academy of Sciences.

[199]  M. Farries,et al.  Reinforcement learning with modulated spike timing dependent synaptic plasticity. , 2007, Journal of neurophysiology.

[200]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[201]  Jonathan Touboul,et al.  Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons , 2008, SIAM J. Appl. Math..

[202]  Robert A. Legenstein,et al.  A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback , 2008, PLoS Comput. Biol..

[203]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[204]  Benjamin Schrauwen,et al.  Compact hardware liquid state machines on FPGA for real-time speech recognition , 2008, Neural Networks.

[205]  Aria Alasty,et al.  Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control , 2008 .

[206]  Tobias Delbrück,et al.  Frame-free dynamic digital vision , 2008 .

[207]  Abdullah Al Mamun,et al.  An evolutionary artificial immune system for multi-objective optimization , 2008, Eur. J. Oper. Res..

[208]  Benjamin Schrauwen,et al.  Event detection and localization for small mobile robots using reservoir computing , 2008, Neural Networks.

[209]  Benjamin Schrauwen,et al.  Mobile robot control in the road sign problem using Reservoir Computing networks , 2008, 2008 IEEE International Conference on Robotics and Automation.

[210]  Jelena Kovacevic,et al.  An Introduction to Frames , 2008, Found. Trends Signal Process..

[211]  Clement Vidal,et al.  The Future of Scientific Simulations: from Artificial Life to Artificial Cosmogenesis. , 2008, 0803.1087.

[212]  Hiroyuki Iizuka,et al.  Extended Homeostatic Adaptation: Improving the Link between Internal and Behavioural Stability , 2008, SAB.

[213]  Grzegorz Rozenberg,et al.  The many facets of natural computing , 2008, Commun. ACM.

[214]  Jochen J. Steil,et al.  Improving reservoirs using intrinsic plasticity , 2008, Neurocomputing.

[215]  Jonathan Timmis,et al.  Theoretical advances in artificial immune systems , 2008, Theor. Comput. Sci..

[216]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.

[217]  Haruhiko Nishimura,et al.  Stochastic Resonance in Recurrent Neural Network with Hopfield-Type Memory , 2009, Neural Processing Letters.

[218]  Carlo Baldassi Generalization Learning in a Perceptron with Binary Synapses , 2009, 1211.3024.

[219]  Ajith Abraham,et al.  Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications , 2009, Foundations of Computational Intelligence.

[220]  Giacomo Indiveri,et al.  Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[221]  Jonathan Touboul,et al.  Spiking Dynamics of Bidimensional Integrate-and-Fire Neurons , 2009, SIAM J. Appl. Dyn. Syst..

[222]  Jin Bae Park,et al.  Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty , 2009, IEEE Transactions on Control Systems Technology.

[223]  James M. Whitacre,et al.  Degeneracy: a link between evolvability, robustness and complexity in biological systems , 2009, Theoretical Biology and Medical Modelling.

[224]  Julie Greensmith,et al.  Artificial Dendritic Cells: Multi-faceted Perspectives , 2009, Human-Centric Information Processing Through Granular Modelling.

[225]  Hiroki Sayama,et al.  Swarm Chemistry , 2009, Artificial Life.

[226]  Andrew Adamatzky,et al.  Artificial Life Models in Hardware , 2009 .

[227]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[228]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[229]  Timothée Masquelier,et al.  Competitive STDP-Based Spike Pattern Learning , 2009, Neural Computation.

[230]  Walter Senn,et al.  A Gradient Learning Rule for the Tempotron , 2009, Neural Computation.

[231]  Leon O. Chua,et al.  MEMRISTOR CELLULAR AUTOMATA AND MEMRISTOR DISCRETE-TIME CELLULAR NEURAL NETWORKS , 2009 .

[232]  Chiara Bartolozzi,et al.  Global scaling of synaptic efficacy: Homeostasis in silicon synapses , 2009, Neurocomputing.

[233]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[234]  J. Neumann Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[235]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[236]  Gordon Pipa,et al.  SORN: A Self-Organizing Recurrent Neural Network , 2009, Front. Comput. Neurosci..

[237]  W. Senn,et al.  Reinforcement learning in populations of spiking neurons , 2008, Nature Neuroscience.

[238]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[239]  Jingqing Han,et al.  From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..

[240]  Wulfram Gerstner,et al.  Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail , 2009, PLoS Comput. Biol..

[241]  Jonathan Timmis,et al.  Noname manuscript No. (will be inserted by the editor) On Artificial Immune Systems and Swarm Intelligence , 2022 .

[242]  Axel Bender,et al.  Degeneracy: a design principle for achieving robustness and evolvability. , 2009, Journal of theoretical biology.

[243]  Alastair Channon,et al.  Artificial Life , 2010, Encyclopedia of Machine Learning.

[244]  Benjamin Schrauwen,et al.  Phoneme Recognition with Large Hierarchical Reservoirs , 2010, NIPS.

[245]  Sander M. Bohte,et al.  Fractionally Predictive Spiking Neurons , 2010, NIPS.

[246]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[247]  W. Gerstner,et al.  Connectivity reflects coding: a model of voltage-based STDP with homeostasis , 2010, Nature Neuroscience.

[248]  Benjamin Schrauwen,et al.  Photonic reservoir computing: a new approach to optical information processing , 2010, Photonics North.

[249]  Răzvan V. Florian The chronotron: a neuron that learns to fire temporally-precise spike patterns , 2010 .

[250]  Liam McDaid,et al.  SWAT: A Spiking Neural Network Training Algorithm for Classification Problems , 2010, IEEE Transactions on Neural Networks.

[251]  Brent Doiron,et al.  Slope-Based Stochastic Resonance: How Noise Enables Phasic Neurons to Encode Slow Signals , 2010, PLoS Comput. Biol..

[252]  L. Abbott Stability and competition in multi-spike models of spike-timing dependent plasticity , 2010 .

[253]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[254]  Cornelius Glackin,et al.  Receptive field optimisation and supervision of a fuzzy spiking neural network , 2011, Neural Networks.

[255]  Fernando José Von Zuben,et al.  An echo state network architecture based on volterra filtering and PCA with application to the channel equalization problem , 2011, The 2011 International Joint Conference on Neural Networks.

[256]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[257]  Andrew Adamatzky,et al.  On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium , 2010, 1006.1900.

[258]  Leon O. Chua,et al.  Memristive Excitable Cellular Automata , 2011, Int. J. Bifurc. Chaos.

[259]  Martin Randles,et al.  Distributed redundancy and robustness in complex systems , 2011, J. Comput. Syst. Sci..

[260]  Takashi Ikegami,et al.  Robustness in artificial life , 2011, Int. J. Bio Inspired Comput..

[261]  M. Sanjuán,et al.  Map-based models in neuronal dynamics , 2011 .

[262]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[263]  Victor Sreeram,et al.  Controlling Chaos in a Memristor Based Circuit Using a Twin-T Notch Filter , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[264]  Sophie Denève,et al.  Spike-Based Population Coding and Working Memory , 2011, PLoS Comput. Biol..

[265]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[266]  Jean-Jacques E. Slotine,et al.  Collective Stability of Networks of Winner-Take-All Circuits , 2011, Neural Computation.

[267]  Alexandre Pouget,et al.  Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models , 2012, NIPS.

[268]  Wytse J. Wadman,et al.  Source (or Part of the following Source): Type Article Title Homeostatic Scaling of Excitability in Recurrent Neural Networks. Author(s) Homeostatic Scaling of Excitability in Recurrent Neural Networks , 2022 .

[269]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[270]  Changsong Zhou,et al.  Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks , 2012 .

[271]  Laurent Larger,et al.  Photonic nonlinear transient computing with multiple-delay wavelength dynamics. , 2012, Physical review letters.

[272]  Gordana Dodig-Crnkovic,et al.  From the Closed Classical Algorithmic Universe to an Open World of Algorithmic Constellations , 2012, ArXiv.

[273]  André Grüning,et al.  Supervised Learning of Logical Operations in Layered Spiking Neural Networks with Spike Train Encoding , 2012, Neural Processing Letters.

[274]  Jean-Jacques E. Slotine,et al.  Competition Through Selective Inhibitory Synchrony , 2012, Neural Computation.

[275]  Qing Zhou,et al.  Collision-based flexible image encryption algorithm , 2012, J. Syst. Softw..

[276]  Jun Wang,et al.  Chaotic Time Series Prediction Based on a Novel Robust Echo State Network , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[277]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.

[278]  Stephen Grossberg,et al.  Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: Noise, saturation, short-term memory, synaptic scaling, and BDNF , 2012, Neural Networks.

[279]  Sander M. Bohte,et al.  Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model , 2012, NIPS.

[280]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[281]  Giacomo Indiveri,et al.  Exploiting device mismatch in neuromorphic VLSI systems to implement axonal delays , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[282]  Andrew Adamatzky,et al.  Collision-Based Computing , 2002, Springer London.

[283]  Stefan Habenschuss,et al.  Stochastic Computations in Cortical Microcircuit Models , 2013, PLoS Comput. Biol..

[284]  Wolfgang Maass,et al.  Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity , 2013, PLoS Comput. Biol..

[285]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[286]  Guanrong Chen,et al.  Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua , 2013 .

[287]  Nikola Kasabov,et al.  Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. , 2013, Neural networks : the official journal of the International Neural Network Society.

[288]  W. Senn,et al.  Matching Recall and Storage in Sequence Learning with Spiking Neural Networks , 2013, The Journal of Neuroscience.

[289]  Guodong Zhang,et al.  New Algebraic Criteria for Synchronization Stability of Chaotic Memristive Neural Networks With Time-Varying Delays , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[290]  Jens Bürger,et al.  Variation-tolerant Computing with Memristive Reservoirs , 2013, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[291]  Wulfram Gerstner,et al.  Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons , 2013, PLoS Comput. Biol..

[292]  Rodney J. Douglas,et al.  Spike-Based Probabilistic Inference in Analog Graphical Models Using Interspike-Interval Coding , 2013, Neural Computation.

[293]  Jie Han,et al.  Approximate computing: An emerging paradigm for energy-efficient design , 2013, 2013 18th IEEE European Test Symposium (ETS).

[294]  Wulfram Gerstner,et al.  Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate Detector , 2013, PLoS Comput. Biol..

[295]  Yan Pei,et al.  Chaotic Evolution: fusion of chaotic ergodicity and evolutionary iteration for optimization , 2014, Natural Computing.

[296]  Ioana Sporea,et al.  Supervised Learning in Multilayer Spiking Neural Networks , 2012, Neural Computation.

[297]  Alireza Goudarzi,et al.  DNA Reservoir Computing: A Novel Molecular Computing Approach , 2013, DNA.

[298]  Christof Teuscher,et al.  Computational Capabilities of Random Automata Networks for Reservoir Computing , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[299]  M. C. Soriano,et al.  Information Processing Using Transient Dynamics of Semiconductor Lasers Subject to Delayed Feedback , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[300]  Giacomo Indiveri,et al.  Synthesizing cognition in neuromorphic electronic systems , 2013, Proceedings of the National Academy of Sciences.

[301]  Jennifer Hasler,et al.  Neuron Array With Plastic Synapses and Programmable Dendrites , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[302]  Dean V. Buonomano,et al.  ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS , 2012, Nature Neuroscience.

[303]  Duc-Hau Le,et al.  A coherent feedforward loop design principle to sustain robustness of biological networks , 2013, Bioinform..

[304]  Wolfgang Banzhaf,et al.  Artificial Chemistries on GPU , 2013, Massively Parallel Evolutionary Computation on GPGPUs.

[305]  Oliver Obst,et al.  Nano-scale reservoir computing , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[306]  Giacomo Indiveri,et al.  Spatio-temporal Spike Pattern Classification in Neuromorphic Systems , 2013, Living Machines.

[307]  Hideyuki Ando,et al.  Extended homeostatic adaptation model with metabolic causation in plasticity mechanism—toward constructing a dynamic neural network model for mental imagery , 2013, Adapt. Behav..

[308]  John P. Hayes,et al.  Survey of Stochastic Computing , 2013, TECS.

[309]  Farookh Khadeer Hussain,et al.  Support vector regression with chaos-based firefly algorithm for stock market price forecasting , 2013, Appl. Soft Comput..

[310]  Yoshua Bengio,et al.  Training deep neural networks with low precision multiplications , 2014 .

[311]  Deepak Khosla,et al.  Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition , 2014, International Journal of Computer Vision.

[312]  Christof Teuscher Unconventional Computing Catechism , 2014, Front. Robot. AI.

[313]  David Kappel,et al.  STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning , 2014, PLoS Comput. Biol..

[314]  Shaista Hussain,et al.  Improved margin multi-class classification using dendritic neurons with morphological learning , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[315]  Sander M. Bohte,et al.  Spiking Neural Networks: Principles and Challenges , 2014, ESANN.

[316]  Subhrajit Roy,et al.  Liquid State Machine With Dendritically Enhanced Readout for Low-Power, Neuromorphic VLSI Implementations , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[317]  Giacomo Indiveri,et al.  Learning, Inference, and Replay of Hidden State Sequences in Recurrent Spiking Neural Networks , 2014 .

[318]  Chiara Bartolozzi,et al.  Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems , 2014, Proceedings of the IEEE.

[319]  A. Rezaee Jordehi A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems , 2014, Neural Computing and Applications.

[320]  Ferrante Neri,et al.  An Optimization Spiking Neural P System for Approximately Solving Combinatorial Optimization Problems , 2014, Int. J. Neural Syst..

[321]  Benjamin Schrauwen,et al.  Nanophotonic Reservoir Computing With Photonic Crystal Cavities to Generate Periodic Patterns , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[322]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[323]  Wulfram Gerstner,et al.  Neuronal Dynamics: From Single Neurons To Networks And Models Of Cognition , 2014 .

[324]  Ron Meir,et al.  Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete Weights , 2014, NIPS.

[325]  Dharmendra S. Modha,et al.  Backpropagation for Energy-Efficient Neuromorphic Computing , 2015, NIPS.

[326]  Evangelos Stromatias,et al.  Supervised learning in Spiking Neural Networks with limited precision: SNN/LP , 2014, 2015 International Joint Conference on Neural Networks (IJCNN).

[327]  Gualtiero Piccinini,et al.  Physical computation : a mechanistic account , 2015 .

[328]  Romain Brette,et al.  Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain , 2015, Front. Syst. Neurosci..

[329]  Matthew Cook,et al.  Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[330]  Serge Massar,et al.  FPGA Implementation of Reservoir Computing with Online Learning , 2015 .

[331]  Shaista Hussain,et al.  Hardware-Amenable Structural Learning for Spike-Based Pattern Classification Using a Simple Model of Active Dendrites , 2014, Neural Computation.

[332]  Everton J. Agnes,et al.  Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks , 2015, Nature Communications.

[333]  Sundarapandian Vaidyanathan,et al.  Global Chaos Synchronization of Chemical Chaotic Reactors via Novel Sliding Mode Control Method , 2015 .

[334]  Carlo Baldassi,et al.  Subdominant Dense Clusters Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses. , 2015, Physical review letters.

[335]  Dragan A. Savić,et al.  An investigation of the efficient implementation of cellular automata on multi-core CPU and GPU hardware , 2015, J. Parallel Distributed Comput..

[336]  Sune Lehmann,et al.  Robustness and modular structure in networks , 2011, Network Science.

[337]  Daniel Soudry,et al.  Training Binary Multilayer Neural Networks for Image Classification using Expectation Backpropagation , 2015, ArXiv.

[338]  Giacomo Indiveri,et al.  An event-based architecture for solving constraint satisfaction problems , 2015, Nature Communications.

[339]  Steve B. Furber,et al.  Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms , 2015, Front. Neurosci..

[340]  Stefan Habenschuss,et al.  Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition , 2015, PloS one.

[341]  Yoshua Bengio,et al.  BinaryConnect: Training Deep Neural Networks with binary weights during propagations , 2015, NIPS.

[342]  Giacomo Indiveri,et al.  Memory and Information Processing in Neuromorphic Systems , 2015, Proceedings of the IEEE.

[343]  Carlo Baldassi,et al.  A Max-Sum algorithm for training discrete neural networks , 2015, ArXiv.

[344]  David Kappel,et al.  Network Plasticity as Bayesian Inference , 2015, PLoS Comput. Biol..

[345]  Mark M. Churchland,et al.  Using Firing-Rate Dynamics to Train Recurrent Networks of Spiking Model Neurons , 2016, 1601.07620.

[346]  Yoshua Bengio,et al.  BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 , 2016, ArXiv.

[347]  Constantinos Siettos,et al.  Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools , 2016, Wiley interdisciplinary reviews. Systems biology and medicine.

[348]  L. F. Abbott,et al.  Building functional networks of spiking model neurons , 2016, Nature Neuroscience.

[349]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[350]  Dharmendra S. Modha,et al.  Deep neural networks are robust to weight binarization and other non-linear distortions , 2016, ArXiv.

[351]  Chao Du,et al.  Feature Extraction Using Memristor Networks , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[352]  Shaista Hussain,et al.  Morphological learning in multicompartment neuron model with binary synapses , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[353]  Serge Massar,et al.  Fully analogue photonic reservoir computer , 2016, Scientific Reports.

[354]  Ingo Fischer,et al.  All-optical neuromorphic computing in optical networks of semiconductor lasers , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[355]  Philippe Vincent-Lamarre,et al.  Driving reservoir models with oscillations: a solution to the extreme structural sensitivity of chaotic networks , 2016, Journal of Computational Neuroscience.

[356]  Hilbert J. Kappen,et al.  Learning Universal Computations with Spikes , 2015, PLoS Comput. Biol..

[357]  Paris Smaragdis,et al.  Bitwise Neural Networks , 2016, ArXiv.

[358]  Wolfgang Maass,et al.  Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123 , 2016, eNeuro.

[359]  Susan Stepney,et al.  Evolving Carbon Nanotube Reservoir Computers , 2016, UCNC.

[360]  Arvind Kumar,et al.  Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control , 2015, bioRxiv.

[361]  Chiara Bartolozzi,et al.  Automatic gain control of ultra-low leakage synaptic scaling homeostatic plasticity circuits , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[362]  Tobi Delbrück,et al.  Training Deep Spiking Neural Networks Using Backpropagation , 2016, Front. Neurosci..

[363]  Richard George,et al.  Structural Plasticity Denoises Responses and Improves Learning Speed , 2016, Front. Comput. Neurosci..

[364]  Igor Carron,et al.  XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks , 2016 .

[365]  Jochen Triesch,et al.  Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring , 2015, bioRxiv.

[366]  Masakazu Aono,et al.  Nanoarchitectonic atomic switch networks for unconventional computing , 2016 .

[367]  Siddharth Joshi,et al.  Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines , 2015, Front. Neurosci..

[368]  Shaista Hussain,et al.  Learning Spike Time Codes Through Morphological Learning With Binary Synapses , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[369]  Ella Gale,et al.  Memristors in Unconventional Computing: How a Biomimetic Circuit Element Can be Used to Do Bioinspired Computation , 2017 .

[370]  Iulia-Alexandra Lungu,et al.  Predicting voluntary movements from motor cortical activity with neuromorphic hardware , 2017, IBM J. Res. Dev..

[371]  Noise-induced stabilization of collective dynamics. , 2017, Physical review. E.

[372]  Ran El-Yaniv,et al.  Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations , 2016, J. Mach. Learn. Res..

[373]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[374]  Narayanan Vijaykrishnan,et al.  Always-On Speech Recognition Using TrueNorth, a Reconfigurable, Neurosynaptic Processor , 2017, IEEE Transactions on Computers.

[375]  Subhrajit Roy,et al.  An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.