A review on the evolvement trend of robotic interaction control

Purpose Interaction plays a significant role in robotics and it is considered in all levels of hardware and software control design. Several models have been introduced and developed for controlling robotic interaction. This study aims to address and analyze the state-of-the-art on robotic interaction control by which it is revealed that both practical and theoretical issues have to be faced when designing a controller. Design/methodology/approach In this review, a critical analysis of the control algorithms developed for robotic interaction tasks is presented. A hierarchical classification of distributed control levels from general aspects to specific control algorithms is also illustrated. Hence, two main control paradigms are discussed together with control approaches and architectures. The challenges of each control approach are discussed and the relevant solutions are presented. Findings This review presents an evolvement trend of interaction control theories and technologies over time. In addition, it highlights the pros and cons of each control approaches with addressing how the flaws of one control approach were compensated by emerging another control methods. Originality/value This review provides the robotic controller designers to select the right architecture and accordingly design the appropriate control algorithm for any given interactive task and with respect to the technology implemented in robotic manipulator.

[1]  Paolo Dario,et al.  Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery. , 2013, NeuroRehabilitation.

[2]  Jose L Pons,et al.  Converging clinical and engineering research on neurorehabilitation , 2013 .

[3]  Nikolaos G. Tsagarakis,et al.  Human-like impedance and minimum effort control for natural and efficient manipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[4]  P. Dario,et al.  An advanced robot system for automated diagnostic tasks through palpation , 1988, IEEE Transactions on Biomedical Engineering.

[5]  J. Salisbury,et al.  Active stiffness control of a manipulator in cartesian coordinates , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[6]  Ali Shahdi,et al.  Discrete-time multi-model control for cooperative teleoperation under time delay , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[7]  Hermano I Krebs,et al.  Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus , 2004, Journal of NeuroEngineering and Rehabilitation.

[8]  Hermano Igo Krebs,et al.  Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy , 2003, Auton. Robots.

[9]  E. Nakano,et al.  Cooperational Control of the Anthropomorphous Manipulator "MELARM" , 1974 .

[10]  Bruno Siciliano,et al.  Six-DOF impedance control based on angle/axis representations , 1999, IEEE Trans. Robotics Autom..

[11]  Nikolaos G. Tsagarakis,et al.  Natural redundancy resolution in dual-arm manipulation using configuration dependent stiffness (CDS) control , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[12]  J. Y. S. Luh,et al.  Constrained Relations between Two Coordinated Industrial Robots for Motion Control , 1987 .

[13]  Seul Jung,et al.  Force tracking impedance control of robot manipulators under unknown environment , 2004, IEEE Transactions on Control Systems Technology.

[14]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part III—Applications , 1985 .

[15]  Sukhan Lee,et al.  Generalized impedance of manipulators: its application to force and position control , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[16]  Pasquale Chiacchio,et al.  Stability analysis of a joint space control law for a two-manipulator system , 1999, IEEE Trans. Autom. Control..

[17]  Oussama Khatib,et al.  Inertial Properties in Robotic Manipulation: An Object-Level Framework , 1995, Int. J. Robotics Res..

[18]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  Bruno Siciliano,et al.  Task-Space Control of Robot Manipulators With Null-Space Compliance , 2014, IEEE Transactions on Robotics.

[20]  Lorenzo Sciavicco,et al.  The parallel approach to force/position control of robotic manipulators , 1993, IEEE Trans. Robotics Autom..

[21]  Janan Zaytoon,et al.  Control system design of a 3-DOF upper limbs rehabilitation robot , 2008, Comput. Methods Programs Biomed..

[22]  P. Chiacchio,et al.  Six-DOF Impedance Control of Dual-Arm Cooperative Manipulators , 2008, IEEE/ASME Transactions on Mechatronics.

[23]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[24]  Nikolaos G. Tsagarakis,et al.  TeleImpedance: Exploring the role of common-mode and configuration-dependant stiffness , 2012, 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012).

[25]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..

[26]  Silvestro Micera,et al.  Biomechanical assessment of reaching movements in post-stroke patients during a robot-aided rehabilitation , 2011 .

[27]  W. A. Gruver,et al.  Stable hybrid position/force control for redundant manipulators , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[28]  Wayne J. Book,et al.  Master-Slave Manipulator Performance for Various Dynamic Characteristics and Positioning Task Parameters , 1980 .

[29]  Shahin Sirouspour,et al.  Multi-operator/multi-robot teleoperation: an adaptive nonlinear control approach , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Oussama Khatib,et al.  Design and Development of Torque- Controlled Joints , 1989, ISER.

[31]  M Calisti,et al.  Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot , 2015, Bioinspiration & biomimetics.

[32]  Giuseppe Muscio,et al.  Grasp force and object impedance control for arm/hand systems , 2013, 2013 16th International Conference on Advanced Robotics (ICAR).

[33]  Sukhan Lee,et al.  Dual redundant arm configuration optimization with task-oriented dual arm manipulability , 1989, IEEE Trans. Robotics Autom..

[34]  Stanley A. Schneider,et al.  Object impedance control for cooperative manipulation: theory and experimental results , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[35]  Robert G. Bonitz,et al.  Robust internal-force based impedance control for coordinating manipulators-theory and experiments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[36]  Masaru Uchiyama,et al.  A symmetric hybrid position/force control scheme for the coordination of two robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[37]  Rieko Osu,et al.  Endpoint Stiffness of the Arm Is Directionally Tuned to Instability in the Environment , 2007, The Journal of Neuroscience.

[38]  Daniel E. Whitney,et al.  Force Feedback Control of Manipulator Fine Motions , 1977 .

[39]  Etienne Burdet,et al.  3DOM: A 3 Degree of Freedom Manipulandum to Investigate Redundant Motor Control , 2014, IEEE Transactions on Haptics.

[40]  Miomir Vukobratović,et al.  Historical perspective of hybrid control in robotics: beginnings, evolution, criticism and trends , 1995 .

[41]  Alin Albu-Schäffer,et al.  Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Seul Jung,et al.  Robust neural force control scheme under uncertainties in robot dynamics and unknown environment , 2000, IEEE Trans. Ind. Electron..

[43]  Yahui Gan,et al.  Cooperative Path Planning and Constraints Analysis for Master-Slave Industrial Robots , 2012 .

[44]  S. Sirouspour,et al.  Adaptive nonlinear teleoperation control in multi-master/multi-slave environments , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[45]  Nikolaos G. Tsagarakis,et al.  Tele-impedance: Teleoperation with impedance regulation using a body–machine interface , 2012, Int. J. Robotics Res..

[46]  Rieko Osu,et al.  The central nervous system stabilizes unstable dynamics by learning optimal impedance , 2001, Nature.

[47]  Akio Namiki,et al.  Development of a remotely-operated master-slave manipulation system with a force-feedback function for use in endoscopic surgery , 2000, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143).

[48]  Carlos Canudas de Wit,et al.  An exponentially stable adaptive control for force and position tracking of robot manipulators , 1999, IEEE Trans. Autom. Control..

[49]  A. A. Goldenberg,et al.  The cause of kinematic instability in hybrid position/force control: contact compliance , 1997, Proceedings Intelligent Information Systems. IIS'97.

[50]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[51]  Homayoun Seraji,et al.  Direct adaptive impedance control of robot manipulators , 1993, J. Field Robotics.

[52]  Max Q.-H. Meng,et al.  Impedance control with adaptation for robotic manipulations , 1991, IEEE Trans. Robotics Autom..

[53]  Pyung Hun Chang,et al.  Relative Impedance Control for Dual-Arm Robots Performing Asymmetric Bimanual Tasks , 2014, IEEE Transactions on Industrial Electronics.

[54]  Shuzhi Sam Ge,et al.  Impedance adaptation for optimal robot–environment interaction , 2014, Int. J. Control.

[55]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[56]  Rieko Osu,et al.  CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm , 2008, The Journal of Neuroscience.

[57]  H. Harry Asada,et al.  Direct-Drive Robots: Theory and Practice , 1987 .

[58]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[59]  Shahin Sirouspour Robust Control Design for Cooperative Teleoperation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[60]  Shuzhi Sam Ge,et al.  Impedance Learning for Robots Interacting With Unknown Environments , 2014, IEEE Transactions on Control Systems Technology.

[61]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[62]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[63]  S. Hayati Hybrid position/Force control of multi-arm cooperating robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[64]  Hermano Igo Krebs,et al.  Therapeutic Robotics: A Technology Push , 2006, Proceedings of the IEEE.

[65]  Hermano I Krebs,et al.  Robotic Measurement of Arm Movements After Stroke Establishes Biomarkers of Motor Recovery , 2014, Stroke.

[66]  Ping Hsu Coordinated control of multiple manipulator systems , 1993, IEEE Trans. Robotics Autom..

[67]  Nicola Vitiello,et al.  A robotic model to investigate human motor control , 2011, Biological Cybernetics.

[68]  Peter J. Beek,et al.  Impedance is modulated to meet accuracy demands during goal-directed arm movements , 2006, Experimental Brain Research.

[69]  John T. Wen,et al.  Motion and force control of multiple robotic manipulators , 1992, Autom..

[70]  Heidar Ali Talebi,et al.  A robust adaptive control scheme for two planar manipulators handling an unknown object in an assembly process , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[71]  Matteo Cianchetti,et al.  Dynamic Walking with a Soft Limb Robot , 2015, Living Machines.

[72]  N. Hogan,et al.  Robot-aided neurorehabilitation. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[73]  J.N. Marcincin,et al.  Design of the intelligent robotics systems from the biorobotics point of view , 1997, Proceedings of IEEE International Conference on Intelligent Engineering Systems.

[74]  Bruno Siciliano,et al.  Redundancy Resolution in Human-Robot Co-manipulation with Cartesian Impedance Control , 2014, ISER.

[75]  Jan F. Broenink,et al.  A spatial impedance controller for robotic manipulation , 1997, IEEE Trans. Robotics Autom..

[76]  Pasquale Chiacchio,et al.  Task-space regulation of cooperative manipulators , 2000, Autom..

[77]  Giorgio Buttazzo,et al.  An Anthropomorphic Robot Finger for Investigating Artificial Tactile Perception , 1987 .

[78]  Claudio Melchiorri,et al.  Control schemes for teleoperation with time delay: A comparative study , 2002, Robotics Auton. Syst..

[79]  Andrew A. Goldenberg,et al.  Robust Impedance Control and Force Regulation: Theory and Experiments , 1995, Int. J. Robotics Res..

[80]  Bruno Siciliano,et al.  A survey of robot interaction control schemes with experimental comparison , 1999 .

[81]  Masaru Uchiyama,et al.  Cooperative Manipulators , 2008, Springer Handbook of Robotics.

[82]  Péter Tamás Szemes,et al.  Development of single-master multislave telemicromanipulation system , 2004 .

[83]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part II—Implementation , 1985 .

[84]  Allison M. Okamura,et al.  An overview of dexterous manipulation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[85]  Oussama Khatib,et al.  Object manipulation in a multi-effector robot system , 1988 .

[86]  Ferdinando A. Mussa-Ivaldi,et al.  How Soft Is That Pillow? The Perceptual Localization of the Hand and the Haptic Assessment of Contact Rigidity , 2011, The Journal of Neuroscience.

[87]  Stuart I. Brown,et al.  Comparison of two actuation systems for laparoscopic surgical manipulators using motion analysis , 2011, Surgical Endoscopy.

[88]  Daniel E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[89]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[90]  Gerd Hirzinger,et al.  Synergy level impedance control for multifingered hands , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[91]  Paolo Dario,et al.  Modeling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon , 2004, Int. J. Robotics Res..

[92]  Hermano I Krebs,et al.  Telerehabilitation robotics: bright lights, big future? , 2006, Journal of rehabilitation research and development.

[93]  James A. Maples,et al.  Experiments in force control of robotic manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[94]  Antal K. Bejczy,et al.  Teleoperation and Telerobotics , 2001 .

[95]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[96]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1994, IEEE Trans. Robotics Autom..

[97]  Maria Chiara Carrozza,et al.  Upper Limb Robot-Assisted Therapy in Chronic and Subacute Stroke Patients: A Kinematic Analysis , 2013, American journal of physical medicine & rehabilitation.

[98]  Miomir Vukobratović,et al.  Control of Robotic Systems in Contact Tasks , 2001 .

[99]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[100]  Hermano Igo Krebs,et al.  Characterization and control of a screw-driven robot for neurorehabilitation , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[101]  Neville Hogan,et al.  Robotic upper-limb neurorehabilitation in chronic stroke patients. , 2005, Journal of rehabilitation research and development.

[102]  Rajiv V. Dubey,et al.  Variable damping impedance control of a bilateral telerobotic system , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[103]  Robert G. Bonitz,et al.  Internal force-based impedance control for cooperating manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[104]  Seul Jung,et al.  Neural network impedance force control of robot manipulator , 1998, IEEE Trans. Ind. Electron..

[105]  Alin Albu-Schäffer,et al.  A humanoid upper body system for two-handed manipulation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[106]  G. Schreiber,et al.  The Fast Research Interface for the KUKA Lightweight Robot , 2022 .

[107]  Dimitris K. Agrafiotis,et al.  Recovery Robotic Measurement of Arm Movements After Stroke Establishes Biomarkers of Motor , 2013 .

[108]  Gerd Hirzinger,et al.  Impedance Behaviors for Two-handed Manipulation: Design and Experiments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[109]  M. Kawato,et al.  Adaptation to Stable and Unstable Dynamics Achieved By Combined Impedance Control and Inverse Dynamics Model , 2003 .

[110]  Mark W. Spong,et al.  Asymptotic Stability for Force Reflecting Teleoperators with Time Delay , 1992 .

[111]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[112]  Seul Jung,et al.  Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment: Theory, Simulation, and Experiment , 2001, Int. J. Robotics Res..