Distributed coverage of nonconvex environments

1 Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA, and the Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA, aganguli@uiuc.edu 2 Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064, USA, jcortes@ucsc.edu 3 Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA, bullo@engineering.ucsb.edu

[1]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[2]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[3]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[4]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[5]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[6]  J. Baillieul,et al.  Stochastic Strategies for Autonomous Robotic Surveillance , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.

[8]  Gaurav S. Sukhatme,et al.  An Incremental Self-Deployment Algorithm for Mobile Sensor Networks , 2002, Auton. Robots.

[9]  A. Volgenant,et al.  Facility location: a survey of applications and methods , 1996 .

[10]  F. Bullo,et al.  On Synchronous Robotic Networks—Part I: Models, Tasks, and Complexity , 2005, IEEE Transactions on Automatic Control.

[11]  Steven M. LaValle,et al.  Pursuit-evasion in an unknown environment using gap navigation trees , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[12]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[13]  Gregory Dudek,et al.  Efficient topological exploration , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[15]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[16]  Michael Jenkin,et al.  Topo-logical exploration with multiple robots , 1998 .

[17]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[18]  Robert P. Goldman,et al.  Coordinated deployment of multiple, heterogeneous robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[19]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[20]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[21]  Emilio Frazzoli,et al.  On synchronous robotic networks Part II: Time complexity of rendezvous and deployment algorithms , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[22]  T. Shermer Recent Results in Art Galleries , 1992 .

[23]  F. Bullo,et al.  Distributed deployment of asynchronous guards in art galleries , 2006, 2006 American Control Conference.

[24]  T. M. Murali,et al.  Planning Robot Motion Strategies for Efficient Model Construction , 2000 .

[25]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[26]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[27]  Emilio Frazzoli,et al.  On synchronous robotic networks Part I: Models, tasks and complexity notions , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[28]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.