Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods

Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or Bigun's structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.

[1]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[2]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[3]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[4]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[5]  B. D. Lucas Generalized image matching by the method of differences , 1985 .

[6]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[7]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[12]  Gösta H. Granlund,et al.  Optical Flow Based on the Inertia Matrix of the Frequency Domain , 1988 .

[13]  D. Shulman,et al.  Regularization of discontinuous flow fields , 1989, [1989] Proceedings. Workshop on Visual Motion.

[14]  Hans-Hellmut Nagel,et al.  Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.

[15]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[19]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Paolo Nesi,et al.  Variational approach to optical flow estimation managing discontinuities , 1993, Image Vis. Comput..

[21]  Christoph Schnörr On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Richard Szeliski,et al.  Hierarchical spline-based image registration , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Luc Van Gool,et al.  Determination of Optical Flow and its Discontinuities using Non-Linear Diffusion , 1994, ECCV.

[24]  Michael J. Black Recursive Non-Linear Estimation of Discontinuous Flow Fields , 1994, ECCV.

[25]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[26]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[27]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1996, IEEE Trans. Image Process..

[28]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[31]  Naoya Ohta Uncertainty Models of the Gradient Constraint for Optical Flow Computation , 1996 .

[32]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[33]  Richard G. Lane,et al.  Determining optical flow using a differential method , 1997, Image Vis. Comput..

[34]  Hans-Hellmut Nagel,et al.  Spatiotemporally Adaptive Estimation and Segmenation of OF-Fields , 1998, ECCV.

[35]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[36]  Michael Elad,et al.  Recursive Optical Flow Estimation - Adaptive Filtering Approach , 1998, J. Vis. Commun. Image Represent..

[37]  Patrick Pérez,et al.  A multigrid approach for hierarchical motion estimation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[38]  Jörgen Karlholm,et al.  Local Signal Models for Image Sequence Analysis , 1998 .

[39]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[40]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[41]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[42]  Julio Esclarín Monreal,et al.  A PDE model for computing the optimal flow , 1999 .

[43]  Gunnar Farnebäck,et al.  Fast and Accurate Motion Estimation Using Orientation Tensors and Parametric Motion Models , 2000, ICPR.

[44]  Yiannis Aloimonos,et al.  The Statistics of Optical Flow , 2001, Comput. Vis. Image Underst..

[45]  Gunnar Farnebäck Very high accuracy velocity estimation using orientation tensors , 2001, ICCV 2001.

[46]  O. Scherzer,et al.  ANALYSIS OF OPTICAL FLOW MODELS IN THE FRAMEWORK OF THE CALCULUS OF VARIATIONS , 2002 .

[47]  Joachim Weickert,et al.  Combining the Advantages of Local and Global Optic Flow Methods , 2002, DAGM-Symposium.

[48]  William H. Press,et al.  Numerical recipes in C , 2002 .

[49]  Thomas Brox,et al.  Nonlinear Matrix Diffusion for Optic Flow Estimation , 2002, DAGM-Symposium.

[50]  B. Brunt The calculus of variations , 2003 .

[51]  Timo Kohlberger,et al.  Real-Time Optic Flow Computation with Variational Methods , 2003, CAIP.

[52]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.

[53]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[54]  Larry S. Davis,et al.  Temporal Multi-Scale Models for Flow and Acceleration , 2004, International Journal of Computer Vision.

[55]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[56]  David Suter,et al.  Robust Optic Flow Computation , 1998, International Journal of Computer Vision.

[57]  Patrick Bouthemy,et al.  Computation and analysis of image motion: A synopsis of current problems and methods , 1996, International Journal of Computer Vision.

[58]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[59]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[60]  Shang-Hong Lai,et al.  Reliable and Efficient Computation of Optical Flow , 1998, International Journal of Computer Vision.

[61]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[62]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 1999, International Journal of Computer Vision.

[63]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[64]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[65]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[66]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[67]  I. Cohen Nonlinear Variational Method for Optical Flow Computation , 2006 .