1.12 – Learning and Representation

Behavioral evidence implies that even insect brains compute representations of behaviorally relevant aspects of the world. For example, they compute the animal’s position in the word by integrating its velocity with respect to time. Other examples are the learning of the solar ephemeris, the construction of a cognitive map, and episodic memory in food caching. Representations require a symbolic read-write memory that carries information extracted from experience forward in time in a computationally accessible form. The close analogy between the architecture required to access memory in a computer and the architecture of the molecular machinery that accesses genetic information suggests the sort of memory structure to be looked for in the nervous system.

[1]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .

[2]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[3]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[4]  U. Homberg In search of the sky compass in the insect brain , 2004, Naturwissenschaften.

[5]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[6]  Chris Eliasmith,et al.  A Controlled Attractor Network Model of Path Integration in the Rat , 2005, Journal of Computational Neuroscience.

[7]  William F. Towne,et al.  Does swarming cause honey bees to update their solar ephemerides? , 2005, Journal of Experimental Biology.

[8]  Xiao-Jing Wang,et al.  Angular Path Integration by Moving “Hill of Activity”: A Spiking Neuron Model without Recurrent Excitation of the Head-Direction System , 2005, The Journal of Neuroscience.

[9]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[10]  T. S. Collett,et al.  Landmark learning and visuo-spatial memories in gerbils , 1986, Journal of Comparative Physiology A.

[11]  R. Menzel,et al.  Spatial memory, navigation and dance behaviour in Apis mellifera , 2006, Journal of Comparative Physiology A.

[12]  Carol Grant Gould,et al.  The Honey Bee , 1988 .

[13]  A. Dickinson,et al.  Episodic-like memory during cache recovery by scrub jays , 1998, Nature.

[14]  J. Knierim,et al.  Head Direction Cell Representations Maintain Internal Coherence during Conflicting Proximal and Distal Cue Rotations: Comparison with Hippocampal Place Cells , 2006, The Journal of Neuroscience.

[15]  T. S. Collett,et al.  Landmark maps for honeybees , 1987, Biological Cybernetics.

[16]  Fred C. Dyer,et al.  Sun-Compass Learning in Insects , 1996 .

[17]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[18]  E. Rolls,et al.  Self-organizing continuous attractor networks and path integration: two-dimensional models of place cells , 2002, Network.

[19]  D. Wallace,et al.  An Associative Model of Rat Serial Pattern Learning in Three-Element Sequences , 2003, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[20]  B. Frost,et al.  Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ariane S Etienne,et al.  A subterranean mammal uses the magnetic compass for path integration. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[23]  M. Srinivasan,et al.  Honeybee Odometry: Performance in Varying Natural Terrain , 2004, PLoS biology.

[24]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[25]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Collett,et al.  Animal Navigation: Path Integration, Visual Landmarks and Cognitive Maps , 2004, Current Biology.

[27]  R. Baayen,et al.  Shifting paradigms: gradient structure in morphology , 2005, Trends in Cognitive Sciences.

[28]  A. Dickinson,et al.  The Prospective Cognition of Food Caching and Recovery by Western Scrub-Jays (Alphelocoma californica) , 2006 .

[29]  R. Wehner,et al.  Path integration in a three-dimensional maze: ground distance estimation keeps desert ants Cataglyphis fortis on course , 2005, Journal of Experimental Biology.

[30]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[31]  T. Collett,et al.  Calibration of vector navigation in desert ants , 1999, Current Biology.

[32]  C. Koch,et al.  Quantum mechanics in the brain , 2006, Nature.

[33]  C. Gallistel The Principle of Adaptive Specialization as It Applies to Learning and Memory , 2003 .

[34]  R. Muller,et al.  A Quarter of a Century of Place Cells , 1996, Neuron.

[35]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[36]  A. Foá,et al.  Extraocular Photoreception and Circadian Entrainment in Nonmammalian Vertebrates , 2004, Chronobiology international.

[37]  B. Frost,et al.  Do monarch butterflies use polarized skylight for migratory orientation? , 2005, Journal of Experimental Biology.

[38]  Paul Graham,et al.  The binding and recall of snapshot memories in wood ants (Formica rufa L.) , 2004, Journal of Experimental Biology.

[39]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[40]  Rüdiger Wehner,et al.  Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? , 2005, Neurobiology of Learning and Memory.

[41]  Joanna M. Dally,et al.  The social suppression of caching in western scrub-jays (Aphelocoma californica) , 2005 .

[42]  Joanna M. Dally,et al.  Cache protection strategies by western scrub-jays, Aphelocoma californica: implications for social cognition , 2005, Animal Behaviour.

[43]  R. Menzel,et al.  Honey bees navigate according to a map-like spatial memory. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  F. Dyer The biology of the dance language. , 2002, Annual review of entomology.

[45]  A. V. van Opstal,et al.  Dynamic ensemble coding of saccades in the monkey superior colliculus. , 2006, Journal of neurophysiology.

[46]  J. Taube,et al.  On the behavioral significance of head direction cells: neural and behavioral dynamics during spatial memory tasks. , 2001, Behavioral neuroscience.

[47]  P. Callaerts,et al.  Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. , 1995, Science.

[48]  Thomas S Collett,et al.  The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. , 2002, The Journal of experimental biology.

[49]  A. Dickinson,et al.  Can animals recall the past and plan for the future? , 2003, Nature Reviews Neuroscience.

[50]  Nicola S. Clayton,et al.  Western scrub-jays (Aphelocoma californica) use cognitive strategies to protect their caches from thieving conspecifics , 2004, Animal Cognition.

[51]  C. Gallistel The organization of learning , 1990 .

[52]  T. Collett,et al.  Snapshot Memories and Landmark Guidance in Wood Ants , 2003, Current Biology.

[53]  C. Gallistel Coordinate Transformations in the Genesis of Directed Action , 1999 .

[54]  N. Clayton,et al.  The rationality of animal memory: complex caching strategies of western scrub jays , 2006 .

[55]  J. Konorski Integrative activity of the brain : an interdisciplinary approach , 1967 .

[56]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[57]  David Lindley Degrees Kelvin: A Tale of Genius, Invention, and Tragedy , 2004 .

[58]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[59]  R. Foster,et al.  Inner retinal photoreceptors (IRPs) in mammals and teleost fish , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[60]  Mark A. Gluck,et al.  Cortico-hippocampal interaction and adaptive stimulus representation: A neurocomputational theory of associative learning and memory , 2005, Neural Networks.

[61]  F. Dyer,et al.  Partial experience with the arc of the sun is sufficient for all-day sun compass orientation in homing pigeons, Columba livia. , 2000, The Journal of experimental biology.

[62]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[63]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[64]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[65]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[66]  Edward E. Smith,et al.  An Invitation to cognitive science , 1997 .

[67]  K. Schmidt-Koenig The Sun Azimuth Compass: One Factor in the Orientation of Homing Pigeons , 1960, Science.

[68]  F. Dyer,et al.  Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Giunchi,et al.  The effect of clock-shift on the initial orientation of wild rock doves (Columba l. livia) , 2003, Naturwissenschaften.

[70]  A. Dickinson,et al.  Memory for the content of caches by scrub jays (Aphelocoma coerulescens). , 1999, Journal of experimental psychology. Animal behavior processes.

[71]  Pattie Maes,et al.  How insects learn about the sun's course: alternative modeling approaches , 1996 .

[72]  M. Fanselow Associations and Memories: The Role of NMDA Receptors and Long-Term Potentiation , 1993 .

[73]  M. Campos,et al.  Effects of eye position upon activity of neurons in macaque superior colliculus. , 2006, Journal of neurophysiology.

[74]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[75]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[76]  N. Franks,et al.  Food Hoarding in Animals , 1990 .

[77]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[78]  Roland Maurer,et al.  Resetting the path integrator: a basic condition for route-based navigation , 2004, Journal of Experimental Biology.

[79]  J. Takahashi,et al.  Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms , 1984, Nature.

[80]  T. Penney Electrophysiological correlates of interval timing in the Stop-Reaction-Time task. , 2004, Brain research. Cognitive brain research.

[81]  N. Emery,et al.  Effects of experience and social context on prospective caching strategies by scrub jays , 2001, Nature.

[82]  C. L. Hull,et al.  A Behavior System , 1954 .

[83]  A. Dickinson,et al.  Retrospective cognition by food-caching western scrub-jays☆ , 2005 .

[84]  R. Foster,et al.  Non-rod, non-cone photoreception in rodents and teleost fish. , 2003, Novartis Foundation symposium.

[85]  K. Frisch The dance language and orientation of bees , 1967 .

[86]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[87]  R. Ivry,et al.  The neural representation of time , 2004, Current Opinion in Neurobiology.

[88]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[89]  E. Kandel,et al.  Is there a cell-biological alphabet for simple forms of learning? , 1984 .

[90]  T. Collett,et al.  Weak and strong priming cues in bumblebee contextual learning , 2005, Journal of Experimental Biology.

[91]  R. Wehner,et al.  Navigation in wood ants Formica japonica: context dependent use of landmarks , 2004, Journal of Experimental Biology.