Custom distribution for sampling-based motion planning

Sampling-based motion planning algorithms are widely used in robotics because they are very effective in high-dimensional spaces. However, the success rate and quality of the solutions are determined by an adequate selection of their parameters such as the distance between states, the local planner, and the sampling distribution. For robots with large configuration spaces or dynamic restrictions, selecting these parameters is a challenging task. This paper proposes a method for improving the performance to a set of the most popular sampling-based algorithms, the Rapidlyexploring Random Trees (RRTs) by adjusting the sampling method. The idea is to replace the uniform probability density function (U-PDF) with a custom distribution (C-PDF) learned from previously successful queries in similar tasks. With a few samples, our method builds a custom distribution that allows the RRT to grow to promising states that will lead to a solution. We tested our method in several autonomous driving tasks such as parking maneuvers, obstacle clearance and under narrow passages scenarios. The results show that the proGabriel O. Flores-Aquino E-mail: gfloresa0500@alumno.ipn.mx J. Irving Vasquez-Gomez E-mail: jvasquezg@ipn.mx O. Octavio Gutierrez-Frias E-mail: ogutierrezf@ipn.mx Instituto Politécnico Nacional (IPN), Sección de Estudios de Posgrado e Investigación de la Unidad Profesional Interdisciplinaria en Ingenieŕıa y Tecnoloǵıas Avanzadas (UPIITA), Ciudad de México, México 2 Instituto Politécnico Nacional (IPN), Centro de Inovación y Desarrollo Tecnológico en Cómputo (CIDETEC), Ciudad de México, México Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) Ciudad de México, México posed method outperforms the original RRT and several improved versions in terms of success rate, tree density and computation time. In addition, the proposed method requires a relatively small set of examples, unlike current deep learning techniques that require a vast amount of examples.

[1]  David Hsu,et al.  Workspace importance sampling for probabilistic roadmap planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[2]  Kei Okada,et al.  Experience-based planning with sparse roadmap spanners , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Michael C. Yip,et al.  Motion Planning Networks: Bridging the Gap Between Learning-Based and Classical Motion Planners , 2019, IEEE Transactions on Robotics.

[4]  Lydia E. Kavraki,et al.  Using Local Experiences for Global Motion Planning , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[5]  Jiankun Wang,et al.  Neural RRT*: Learning-Based Optimal Path Planning , 2020, IEEE Transactions on Automation Science and Engineering.

[6]  Mark H. Overmars,et al.  Using Workspace Information as a Guide to Non-uniform Sampling in Probabilistic Roadmap Planners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Oliver Brock,et al.  Single-Query Motion Planning with Utility-Guided Random Trees , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[10]  David González,et al.  A Review of Motion Planning Techniques for Automated Vehicles , 2016, IEEE Transactions on Intelligent Transportation Systems.

[11]  Marco Pavone,et al.  Learning Sampling Distributions for Robot Motion Planning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[12]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  Lydia Tapia,et al.  PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-Based Planning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Marco Pavone,et al.  Robot Motion Planning in Learned Latent Spaces , 2018, IEEE Robotics and Automation Letters.

[16]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[17]  Nancy M. Amato,et al.  A general framework for sampling on the medial axis of the free space , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[18]  G. Swaminathan Robot Motion Planning , 2006 .

[19]  Leslie Pack Kaelbling,et al.  Learning to guide task and motion planning using score-space representation , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[20]  James J. Kuffner,et al.  Adaptive workspace biasing for sampling-based planners , 2008, 2008 IEEE International Conference on Robotics and Automation.

[21]  Yu-Te Lin,et al.  The Gaussian PRM Sampling for Dynamic Configuration Spaces , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[22]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[23]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[24]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[25]  Prases K. Mohanty,et al.  A smart path planner for wheeled mobile robots using adaptive particle swarm optimization , 2021 .

[26]  Lydia Tapia,et al.  RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators From RL Policies , 2019, IEEE Robotics and Automation Letters.

[27]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[28]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[29]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[30]  M. Nazemizadeh,et al.  Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles , 2014 .

[31]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[32]  Dmitry Berenson,et al.  A robot path planning framework that learns from experience , 2012, 2012 IEEE International Conference on Robotics and Automation.