Hemispheric differences in the mesostriatal dopaminergic system

The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.

[1]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[2]  Neurochemical correlates of conditioned circling within localized regions of the striatum , 2004, Experimental Brain Research.

[3]  Hans-Georg Buchholz,et al.  Asymmetry in dopamine D2/3 receptors of caudate nucleus is lost with age , 2007, NeuroImage.

[4]  M. Sarter,et al.  Behavioral and neuronal reorganization after unilateral substantia nigra lesions: Evidence for increased interhemispheric nigrostriatal projections , 1983, Neuroscience.

[5]  P. Goldman-Rakic Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory , 2011 .

[6]  R. Sullivan,et al.  Asymmetrical influence of mesocortical dopamine depletion on stress ulcer development and subcortical dopamine systems in rats: Implications for psychopathology , 1995, Neuroscience.

[7]  J. Carlson,et al.  Side and region dependent changes in dopamine activation with various durations of restraint stress , 1991, Brain Research.

[8]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[9]  Fred H. Gage,et al.  Partial lesion of the substantia nigra: relation between extent of lesion and rotational behavior , 1991, Brain Research.

[10]  W. Koella,et al.  Rotational behavior induced in rats by intranigral application of GABA-related drugs and GABA antagonists. , 1977, European journal of pharmacology.

[11]  Eileen O. Smith,et al.  Decreased single‐photon emission computed tomographic {123I}β‐CIT striatal uptake correlates with symptom severity in parkinson's disease , 1995, Annals of neurology.

[12]  M. Coltheart Hemispheric asymmetry , 1978, Nature.

[13]  H. Kita,et al.  Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey , 2000 .

[14]  M. Bentivoglio,et al.  Evidence for crossed catecholaminergic nigrostriatal projections by combining wheat germ agglutinin-horseradish peroxidase retrograde transport and tyrosine hydroxylase immunocytochemistry , 1985, Brain Research.

[15]  Jos Prickaerts,et al.  Modeling Parkinson's Disease in Rats: An Evaluation of 6-OHDA Lesions of the Nigrostriatal Pathway , 2002, Experimental Neurology.

[16]  S. Deadwyler,et al.  The caudate nucleus of the rat: cell types and the demonstration of a commissural system. , 1974, Journal of anatomy.

[17]  L. Martin,et al.  Ontogenic development of brain asymmetry in dopaminergic neurons , 1994, Brain Research Bulletin.

[18]  J. Fallon,et al.  Dopamine- and cholecystokinin-containing neurons of the crossed mesostriatal projection , 1983, Neuroscience Letters.

[19]  Nicola Simola,et al.  The 6-Hydroxydopamine model of parkinson’s disease , 2007, Neurotoxicity Research.

[20]  S. D. Glick,et al.  13 – Behavioral and Neuropharmacological Correlates of Nigrostriatal Asymmetry in Rats , 1977 .

[21]  N. Fox,et al.  Effects of Early Experience on the Development of Cerebral Asymmetry and Approach–Withdrawal , 2008 .

[22]  R. Roth,et al.  Engagement in a non‐escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress , 1999, Synapse.

[23]  H. Bracha,et al.  Compound measure of hand-foot-eye preference masked opposite turning behavior in healthy right-handers and non-right-handers: technical comment on Mohr et al. (2003). , 2004, Behavioral neuroscience.

[24]  M. Gazzaniga,et al.  Principles of human brain organization derived from split-brain studies , 1995, Neuron.

[25]  J. Carlson,et al.  Regional changes in brain dopamine and serotonin metabolism induced by conditioned circling in rats: effects of water deprivation, learning and individual differences in asymmetry , 1989, Brain Research.

[26]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[27]  A. S. Bazyan,et al.  Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats , 2008, Neuroscience and Behavioral Physiology.

[28]  S. Cabib,et al.  Paw preference and brain dopamine asymmetries , 1995, Neuroscience.

[29]  Kun-Ju Lin,et al.  Dopamine transporter change in drug-naı̈ve schizophrenia: an imaging study with 99mTc-TRODAT-1 , 2003, Schizophrenia Research.

[30]  R. Sullivan,et al.  Hemispheric Asymmetry in Stress Processing in Rat Prefrontal Cortex and the Role of Mesocortical Dopamine , 2004, Stress.

[31]  R. Wise,et al.  Retrograde fluorescent tracing of substantia nigra neurons combined with catecholamine histofluorescence , 1980, Brain Research.

[32]  W. Drevets,et al.  Dopamine Type-1 Receptor Binding in Major Depressive Disorder Assessed using Positron Emission Tomography and [11C]NNC-112 , 2008, Neuropsychopharmacology.

[33]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[34]  M. Bozkurt,et al.  Functional anatomy. , 1980, Equine veterinary journal.

[35]  H. Loh,et al.  Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions,. , 1976, European journal of pharmacology.

[36]  T. Hattori,et al.  Is there a non-dopaminergic nigrostriatal pathway? , 1981, Neuroscience.

[37]  M. Amalric,et al.  Effect of Bilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle on Reaction Time , 2002, Neuropsychopharmacology.

[38]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[39]  C. Marsden,et al.  Behavioural effects mediated by unilateral nigral dopamine receptor stimulation in the rat , 2004, Experimental Brain Research.

[40]  R. Mailman,et al.  Interhemispheric modulation of dopamine receptor interactions in unilateral 6‐OHDA rodent model , 1995, Synapse.

[41]  Manuel Rodriguez,et al.  Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat , 2004, Movement disorders : official journal of the Movement Disorder Society.

[42]  Luke Clark,et al.  The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage , 2003, Neuropsychologia.

[43]  Oshin Vartanian,et al.  Hemispheric specialization in human prefrontal cortex for resolving certain and uncertain inferences. , 2007, Cerebral cortex.

[44]  Z. Kopniczky,et al.  Alterations of behavior and spatial learning after unilateral entorhinal ablation of rats. , 2006, Life sciences.

[45]  J. Carlson,et al.  Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat , 1993, Brain Research.

[46]  C. Gerfen,et al.  Crossed connections of the substantia nigra in the rat , 1982, The Journal of comparative neurology.

[47]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[48]  J. Gruzelier,et al.  Functional neuropsychophysiological asymmetry in schizophrenia: a review and reorientation. , 1999, Schizophrenia bulletin.

[49]  J. Carlson,et al.  Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially alter subcortical dopamine utilization and the behavioral response to stress , 1996, Brain Research.

[50]  S. Dunnett,et al.  6-OHDA lesion models of Parkinson’s disease in the rat , 2011 .

[51]  R. North,et al.  Two types of neurone in the rat ventral tegmental area and their synaptic inputs. , 1992, The Journal of physiology.

[52]  J. H. Fallon,et al.  Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization , 1984, Neuroscience.

[53]  K Ossowska,et al.  Stimulation of glutamate receptors in the intermediate/caudal striatum induces contralateral turning. , 1995, European journal of pharmacology.

[54]  C. Thiel,et al.  Dopaminergic Lateralisation in the Forebrain: Relations to Behavioural Asymmetries and Anxiety in Male Wistar Rats , 2001, Neuropsychobiology.

[55]  H. Kita Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat , 1992, Brain Research.

[56]  D. Reis,et al.  The effect of forebrain lesions in the neonatal rat: Survival of midbrain dopaminergic neurons and the crossed nigrostriatal projection , 1983, The Journal of comparative neurology.

[57]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[58]  G. Stuber,et al.  Optogenetic Modulation of Neural Circuits that Underlie Reward Seeking , 2012, Biological Psychiatry.

[59]  P. Gisquet-Verrier,et al.  Lesions of the prelimbic-infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: evidence for a role in working memory? , 1999, Behavioral neuroscience.

[60]  A. Jon Stoessl,et al.  Nigrostriatal dopamine system and motor lateralization , 2000, Behavioural Brain Research.

[61]  Shubhodeep Chakrabarti,et al.  Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways , 2006, The Journal of comparative neurology.

[62]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[63]  J. Joyce Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine II. Effects of 6-hydroxydopamine or colchicine microinjections into the VTA or reserpine treatment , 1991, Experimental Neurology.

[64]  O. Phillipson Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat , 1979, The Journal of comparative neurology.

[65]  C. Gerfen The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems , 1984, Nature.

[66]  A. Grace,et al.  Dopamine Triggers Heterosynaptic Plasticity , 2013, The Journal of Neuroscience.

[67]  B. Yamamoto,et al.  Reversal of amphetamine-induced circling preference in trained circling rats. , 1984, Life sciences.

[68]  R. Sullivan,et al.  Relationships between stress-induced increases in medial prefrontal cortical dopamine and plasma corticosterone levels in rats: role of cerebral laterality , 1998, Neuroscience.

[69]  C. Meshul,et al.  Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion , 1999, Neuroscience.

[70]  R. Kesner,et al.  Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. , 1996, Cerebral cortex.

[71]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[72]  J. Carlson,et al.  Paw Preference, Rotation, and Dopamine Function in Collins HI and LO Mouse Strains , 1997, Physiology & Behavior.

[73]  Robert W Gereau,et al.  Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons , 2013, The Journal of Neuroscience.

[74]  S. D. Glick,et al.  Right-sided population bias and lateralization of activity in normal rats , 1981, Brain Research.

[75]  S. Totterdell,et al.  Topographical organization of projections from the entorhinal cortex to the striatum of the rat , 1997, Neuroscience.

[76]  A. Louilot,et al.  Asymmetrical increases in dopamine turn-over in the nucleus accumbens and lack of changes in locomotor responses following unilateral dopaminergic depletions in the entorhinal cortex , 1997, Brain Research.

[77]  D. Finch,et al.  Neurophysiology and neuropharmacology of projections from entorhinal cortex to striatum in the rat , 1995, Brain Research.

[78]  A. Nambu,et al.  Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway , 2002, Neuroscience Research.

[79]  A. Siegel,et al.  A projection from the entorhinal cortex to the nucleus accumbens in the rat , 1981, Brain Research.

[80]  J. Joyce Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine I. Effects of intranigral or intracerebroventricular 6-hydroxydopamine lesions of the mesostriatal dopamine system , 1991, Experimental Neurology.

[81]  L. Butcher,et al.  Evidence for a crossed nigrostriatal pathway in rats , 1981, Neuroscience Letters.

[82]  J. Seibyl,et al.  Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. , 2002, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[83]  H. Bracha,et al.  Rotational movement (circling) in normal humans: sex difference and relationship to hand, foot and eye preference , 1987, Brain Research.

[84]  R. Sullivan,et al.  Mesocortical dopamine and HPA axis regulation: Role of laterality and early environment , 2006, Brain Research.

[85]  T. Sejnowski,et al.  A Computational Model of How the Basal Ganglia Produce Sequences , 1998, Journal of Cognitive Neuroscience.

[86]  W. Oertel,et al.  Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems , 1984, Neuroscience Letters.

[87]  U. Ungerstedt,et al.  Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. , 1970, Brain research.

[88]  M. Mintz,et al.  The crossed nigrostriatal projection decussates in the ventral tegmental decussation , 1987, Brain Research.

[89]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[90]  R. Wurtz,et al.  Role of the basal ganglia in the initiation of saccadic eye movements. , 1986, Progress in brain research.

[91]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[92]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[93]  J. Hietala,et al.  Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia , 1999, Schizophrenia Research.

[94]  M. Merello,et al.  [Functional anatomy of the basal ganglia]. , 2000, Revista de neurologia.

[95]  Thomas Wichmann,et al.  Circuits and circuit disorders of the basal ganglia. , 2007, Archives of neurology.

[96]  A. Louilot,et al.  Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception , 1995, Neuroscience.

[97]  Y. Kang,et al.  Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta , 2011, Journal of neurochemistry.

[98]  Luciana Giardino,et al.  Right-left asymmetry of D1- and D2-receptor density is lost in the basal ganglia of old rats , 1996, Brain Research.

[99]  B. Yamamoto,et al.  The trained circling rat: a model for inducing unilateral caudate dopamine metabolism , 1982, Nature.

[100]  K. Fuxe,et al.  Evidence for the existence of monoamine neurons in the central nervous system , 1965, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[101]  A. de Froe [Left and right]. , 1980, Nederlands tijdschrift voor geneeskunde.

[102]  J. Becker Gender Differences in Dopaminergic Function in Striatum and Nucleus Accumbens , 1999, Pharmacology Biochemistry and Behavior.

[103]  S. Houle,et al.  Theta burst stimulation‐induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set‐shifting task – a TMS–[11C]raclopride PET study , 2008, The European journal of neuroscience.

[104]  Nora D. Volkow,et al.  Incentive motivation is associated with striatal dopamine asymmetry , 2008, Biological Psychology.

[105]  C. Meshul,et al.  Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6‐OHDA lesion , 2000, Synapse.

[106]  G. Koob,et al.  Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system , 1981, Behavioural Brain Research.

[107]  S. D. Glick,et al.  Lateral asymmetry of neurotransmitters in human brain , 1982, Brain Research.

[108]  HC Fibiger,et al.  Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  M. Kurachi,et al.  Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex , 2007, Synapse.

[110]  H. Fibiger,et al.  Ascending projections of presumed dopamine-containing neurons in the ventral tegmentum of the rat as demonstrated by horseradish peroxidase , 1977, Neuroscience.

[111]  M. Kurachi,et al.  Neonatal lesions of the left entorhinal cortex affect dopamine metabolism in the rat brain , 2000, Brain Research.

[112]  A. Louilot,et al.  Lateralized interdependence between limbicotemporal and ventrostriatal dopaminergic transmission , 1994, Neuroscience.

[113]  S. D. Glick,et al.  Apomorphine-induced rotation in normal rats and interaction with unilateral caudate lesions , 2004, Psychopharmacologia.

[114]  R. Shibata,et al.  Changes in limbic dopamine metabolism following quinolinic acid lesions of the left entorhinal cortex in rats , 2000, Psychiatry and clinical neurosciences.

[115]  J. Fallon,et al.  Mesostriatal projections from ventral tegmentum and dorsal raphe: Cells project ipsilaterally or contralaterally but not bilaterally , 1982, Neuroscience Letters.

[116]  A. Gratton,et al.  Interhemispheric Regulation of the Medial Prefrontal Cortical Glutamate Stress Response in Rats , 2010, The Journal of Neuroscience.

[117]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[118]  J. Joyce,et al.  Delayed plasticity of the mesolimbic dopamine system following neonatal 6‐OHDA lesions , 1997, Synapse.

[119]  Y. Smith,et al.  Convergence of synaptic terminals from the striatum and the globus pallidus onto single neurones in the substantia nigra and the entopeduncular nucleus. , 1993, Progress in brain research.

[120]  S B Dunnett,et al.  Behavioural analysis of unilateral monoamine depletion in the marmoset. , 1992, Brain : a journal of neurology.

[121]  J. Huston,et al.  Evidence for hemispheric specialization in the marmoset (Callithrix penicillata) based on lateralization of behavioral/neurochemical correlations , 2007, Brain Research Bulletin.

[122]  J. Barroso,et al.  Lateralization in male rats and dopaminergic system: Evidence of right-side population bias , 1987, Physiology & Behavior.

[123]  Thyagarajan Subramanian,et al.  The interhemispheric connections of the striatum: Implications for Parkinson's disease and drug-induced dyskinesias , 2012, Brain Research Bulletin.

[124]  P. Kalivas,et al.  GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area , 1993, Neuroscience.

[125]  Conditioned circling in rats: Bilateral involvement of the mesotelencephalic dopamine system demonstrated following unilateral 6-hydroxydopamine lesions , 1988, Neuroscience.

[126]  Sven Strauss,et al.  The Asymmetrical Brain , 2016 .

[127]  J. Veening,et al.  The topical organization of the afferents to the caudatoputamen of the rat. A horseradish peroxidase study , 1980, Neuroscience.

[128]  R. Sullivan,et al.  Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine , 2013, Synapse.

[129]  Menno Witter Entorhinal cortex , 2020, Scholarpedia.

[130]  C. Gerfen The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat , 1985, The Journal of comparative neurology.

[131]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[132]  Morten H. Christiansen,et al.  A computational model , 2014 .

[133]  M. Delong,et al.  Functional and pathophysiological models of the basal ganglia , 1996, Current Opinion in Neurobiology.

[134]  E. Coons,et al.  Lateralization of striatal dopamine (D2) receptors in normal rats , 1982, Neuroscience Letters.

[135]  Karl F. Stock,et al.  A COMPUTATIONAL MODEL , 2011 .

[136]  T. Crow,et al.  Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. , 1971, Experimental neurology.

[137]  J. Scheel-Krüger,et al.  Behavioural stimulation induced by muscimol and other GABA agonists injected into the substantia nigra , 1977, Neuroscience Letters.

[138]  A. Phillips,et al.  Bilateral augmentation of dopaminergic and serotonergic activity in the striatum and nucleus accumbens induced by conditioned circling , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  José A. Obeso,et al.  Inter-hemispheric asymmetry of nigrostriatal dopaminergic lesion: a possible compensatory mechanism in Parkinson’s disease , 2011, Front. Syst. Neurosci..

[140]  A. Ciobica,et al.  Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: relevance for Parkinson’s disease , 2008, Central European Journal of Biology.

[141]  B. Moghaddam,et al.  The Prefrontal Cortex Regulates the Basal Release of Dopamine in the Limbic Striatum: An Effect Mediated by Ventral Tegmental Area , 1996, Journal of neurochemistry.

[142]  Douglas L. Jones,et al.  From motivation to action: Functional interface between the limbic system and the motor system , 1980, Progress in Neurobiology.

[143]  B S Peterson,et al.  Human basal ganglia volume asymmetries on magnetic resonance images. , 1993, Magnetic resonance imaging.

[144]  S. D. Glick,et al.  Amphetamine enhancement of reward asymmetry , 2004, Psychopharmacology.

[145]  C. Gerfen,et al.  The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[146]  R. J. McDonald,et al.  Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. , 1994, Cerebral cortex.

[147]  Steven Finkbeiner,et al.  Rapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine , 2011, Neuron.

[148]  S D Glick,et al.  Neurochemical Correlate of a Spatial Preference in Rats , 1974, Science.

[149]  Mark A. Gluck,et al.  Love to Win or Hate to Lose? Asymmetry of Dopamine D2 Receptor Binding Predicts Sensitivity to Reward versus Punishment , 2014, Journal of Cognitive Neuroscience.

[150]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[151]  T. P. Jerussi,et al.  Bilateral asymmetry in striatal dopamine metabolism: Implications for pharmacotherapy of schizophrenia , 1982, Brain Research.

[152]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[153]  J. Carlson,et al.  Basal and amphetamine-induced asymmetries in striatal dopamine release and metabolism: bilateral in vivo microdialysis in normal rats , 1988, Brain Research.

[154]  T Landis,et al.  Opposite turning behavior in right-handers and non-right-handers suggests a link between handedness and cerebral dopamine asymmetries. , 2003, Behavioral neuroscience.

[155]  Compensatory increase in extracellular dopamine in the nucleus accumbens of adult rats with neonatal 6-hydroxydopamine treatment. , 2006, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology.

[156]  B. Yamamoto,et al.  Asymmetric dopamine and serotonin metabolism in nigrostriatal and limbic structures of the trained circling rat , 1984, Brain Research.

[157]  R. Wise Brain Reward Circuitry Insights from Unsensed Incentives , 2002, Neuron.

[158]  G. Nikkhah,et al.  Comparison of unilateral and bilateral intrastriatal 6‐hydroxydopamine‐induced axon terminal lesions: Evidence for interhemispheric functional coupling of the two nigrostriatal pathways , 2001, The Journal of comparative neurology.

[159]  Alex Martin,et al.  Two distinct forms of functional lateralization in the human brain , 2013, Proceedings of the National Academy of Sciences.

[160]  F. Richard Ferraro,et al.  Handbook of Approach and Avoidance Motivation , 2010 .

[161]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[162]  S. D. Glick,et al.  Asymmetry in D-2 binding in female rat striata , 1986, Brain Research.

[163]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[164]  G. Nowak Lateralization of neocortical dopamine receptors and dopamine level in normal Wistar rats. , 1989, Polish journal of pharmacology and pharmacy.

[165]  J. Glowinski,et al.  Selective activation of the mesocortical DA system by stress , 1976, Nature.

[166]  C. Sumiyoshi,et al.  Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: Behavioral and in vivo microdialysis studies , 2004, Neuroscience Letters.

[167]  H. Fields,et al.  Ventral Tegmental Area Glutamate Neurons: Electrophysiological Properties and Projections , 2012, The Journal of Neuroscience.

[168]  Richard E Carson,et al.  Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum , 2011, The European journal of neuroscience.

[169]  V. Denenberg Hemispheric laterality in animals and the effects of early experience , 1981, Behavioral and Brain Sciences.

[170]  V. Denenberg,et al.  Interhemispheric coupling coefficients: sex differences in brain neurochemistry. , 1983, The American journal of physiology.

[171]  M. Weinstock,et al.  Increased interhemispheric coupling of the dopamine systems induced by prenatal stress , 1987, Brain Research Bulletin.

[172]  N. A. Buchwald,et al.  Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons , 1986, Brain Research.

[173]  G. Graveland,et al.  The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum , 1985, Brain Research.

[174]  G. P. Smith,et al.  Efferent connections and nigral afferents of the nucleus accumbens septi in the rat , 1978, Neuroscience.

[175]  Kun-Ju Lin,et al.  The interaction between dopamine transporter function, gender differences, and possible laterality in depression , 2013, Psychiatry Research: Neuroimaging.

[176]  K. Neve,et al.  The crossed mesostriatal projection: neurochemistry and developmental response to lesion , 1983, Brain Research.

[177]  S. D. Glick,et al.  Drug-induced rotation in rats without lesions: Behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function , 1976, Psychopharmacology.

[178]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[179]  D. Kimura,et al.  Motor functions of the left hemisphere. , 1974, Brain : a journal of neurology.

[180]  P. Groves,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. , 1980, The Journal of comparative neurology.