On the Use of Optical Flow for Scene Change Detection and Description

We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.

[1]  Howie Choset,et al.  Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph , 2000, Int. J. Robotics Res..

[2]  Luo Juan,et al.  A comparison of SIFT, PCA-SIFT and SURF , 2009 .

[3]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[5]  Luc Van Gool,et al.  Omnidirectional Vision Based Topological Navigation , 2007, International Journal of Computer Vision.

[6]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[7]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[10]  Navid Nourani-Vatani,et al.  Topological localization using optical flow descriptors , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[11]  Navid Nourani-Vatani,et al.  A Study of feature extraction algorithms for optical flow tracking , 2012, ICRA 2012.

[12]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[13]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[14]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[15]  Frank Dellaert,et al.  Bayesian surprise and landmark detection , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  John G. Proakis,et al.  Digital signal processing (3rd ed.): principles, algorithms, and applications , 1996 .

[17]  Gregory Dudek,et al.  Pure Topological Mapping in Mobile Robotics , 2010, IEEE Transactions on Robotics.

[18]  Navid Nourani-Vatani,et al.  Correlation‐based visual odometry for ground vehicles , 2011, J. Field Robotics.

[19]  Navid Nourani Vatani On the use of Optical Flow for Scene Change Detection and Description in Outdoor Lighting-variant Environments , 2011 .

[20]  2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, October 27 - November 1, 2003 , 2003, IROS.

[21]  David Kortenkamp,et al.  Using Gateways To Build A Route Map , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[23]  Changchang Wu,et al.  SiftGPU : A GPU Implementation of Scale Invariant Feature Transform (SIFT) , 2007 .

[24]  Walter Van de Velde Toward Learning Robots , 1991, Robotics Auton. Syst..

[25]  Martin Egelhaaf,et al.  Goal seeking in honeybees: matching of optic flow snapshots? , 2010, Journal of Experimental Biology.

[26]  Emanuele Menegatti,et al.  Bayesian inference in the space of topological maps , 2006, IEEE Transactions on Robotics.

[27]  Jonathan M. Roberts,et al.  Robust outdoor visual localization using a three-dimensional-edge map , 2009 .

[28]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[29]  Frédéric Maire,et al.  Topological SLAM Using Fast Vision Techniques , 2009, FIRA RoboWorld Congress.

[30]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[31]  Illah R. Nourbakhsh,et al.  Topological robot localization by training a vision-based transition detector , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[32]  Gordon Wyeth,et al.  Robust outdoor visual localization using a three‐dimensional‐edge map , 2009, J. Field Robotics.

[33]  Navid Nourani-Vatani,et al.  Scene change detection for vision-based topological mapping and localization , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[35]  Laurent Itti,et al.  Biologically-inspired robotics vision monte-carlo localization in the outdoor environment , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[37]  David M. Bradley,et al.  Real-time image-based topological localization in large outdoor environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Gaurav S. Sukhatme,et al.  Optimum Camera Angle for Optic Flow-Based Centering Response , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Andrea Giachetti,et al.  The use of optical flow for road navigation , 1998, IEEE Trans. Robotics Autom..

[40]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[41]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[42]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[43]  Peter I. Corke,et al.  Automation of an underground mining vehicle using reactive navigation and opportunistic localization , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[44]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[45]  Benjamin Kuipers,et al.  Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy , 2010, Int. J. Robotics Res..

[46]  Benjamin Kuipers,et al.  Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[47]  N. Nikolaidis,et al.  Video shot detection and condensed representation. a review , 2006, IEEE Signal Processing Magazine.

[48]  S. Govindarajulu,et al.  A Comparison of SIFT, PCA-SIFT and SURF , 2012 .

[49]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[50]  Tingting Xu,et al.  The Autonomous City Explorer: Towards Natural Human-Robot Interaction in Urban Environments , 2009, Int. J. Soc. Robotics.

[51]  H. Chernoff,et al.  The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .

[52]  Achim J. Lilienthal,et al.  SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments , 2010, Robotics Auton. Syst..

[53]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[55]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[56]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.