Path Planning for Autonomous Mobile Robots: A Review

Providing mobile robots with autonomous capabilities is advantageous. It allows one to dispense with the intervention of human operators, which may prove beneficial in economic and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot to deliberate about how to move from its location at one moment to another. Looking for the most appropriate path planning algorithm according to the requirements imposed by users can be challenging, given the overwhelming number of approaches that exist in the literature. Moreover, the past review works analyzed here cover only some of these approaches, missing important ones. For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview of the research to date. It introduces a global classification of path planning algorithms, with a focus on those approaches used along with autonomous ground vehicles, but is also extendable to other robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the environment, together with the robot mobility and dynamics, are also addressed from the perspective of path planning. Each of the path planning categories presented in the classification is disclosed and analyzed, and a discussion about their applicability is added at the end.

[1]  Fernando Fausto,et al.  From ants to whales: metaheuristics for all tastes , 2019, Artificial Intelligence Review.

[2]  Trong-The Nguyen,et al.  Robot Path Planning Optimization Based on Multiobjective Grey Wolf Optimizer , 2016, ICGEC.

[3]  Sven Koenig,et al.  Incremental A* , 2001, NIPS.

[4]  Kazuya Yoshida,et al.  Path Planning for Planetary Exploration Rovers and Its Evaluation based on Wheel Slip Dynamics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[5]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[6]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[7]  Daniel Axehill,et al.  Improved Path Planning by Tightly Combining Lattice-Based Path Planning and Optimal Control , 2021, IEEE Transactions on Intelligent Vehicles.

[8]  Jorge L. Martínez,et al.  Experimental kinematics for wheeled skid-steer mobile robots , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Thor I. Fossen,et al.  Path planning and collision avoidance for autonomous surface vehicles I: a review , 2021, Journal of Marine Science and Technology.

[10]  A. M. Almeshal,et al.  Optimal Path Planning for a Remote Sensing Unmanned Ground Vehicle in a Hazardous Indoor Environment , 2018 .

[11]  Amir Khajepour,et al.  Convergence Rate for the Ordered Upwind Method , 2016, Journal of Scientific Computing.

[12]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[13]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[14]  Ron Alterovitz,et al.  Motion Planning Under Uncertainty Using Differential Dynamic Programming in Belief Space , 2011, ISRR.

[15]  Panagiotis Papadakis,et al.  Terrain traversability analysis methods for unmanned ground vehicles: A survey , 2013, Eng. Appl. Artif. Intell..

[16]  Stanley Bak,et al.  Some Improvements for the Fast Sweeping Method , 2010, SIAM J. Sci. Comput..

[17]  Ping Wang,et al.  Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints , 2021, Sensors.

[18]  Robert Fitch,et al.  Sampling‐based hierarchical motion planning for a reconfigurable wheel‐on‐leg planetary analogue exploration rover , 2019, J. Field Robotics.

[19]  Masatsugu Otsuki,et al.  The Right Path: Comprehensive Path Planning for Lunar Exploration Rovers , 2015, IEEE Robotics & Automation Magazine.

[20]  Meng Wang,et al.  Fuzzy logic based robot path planning in unknown environment , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[21]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[22]  David González,et al.  A Review of Motion Planning Techniques for Automated Vehicles , 2016, IEEE Transactions on Intelligent Transportation Systems.

[23]  Mohd Shahrizal Sunar,et al.  A Comprehensive Study on Pathfinding Techniques for Robotics and Video Games , 2015, Int. J. Comput. Games Technol..

[24]  Jaehyun Park,et al.  Global path planning on uneven elevation maps , 2012, 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[25]  Min Tan,et al.  Neural Networks for Mobile Robot Navigation: A Survey , 2006, ISNN.

[26]  Amna Khan,et al.  Optimal Path Planning using RRT* based Approaches: A Survey and Future Directions , 2016 .

[27]  Chenguang Yang,et al.  Mixed Reality Enhanced User Interactive Path Planning for Omnidirectional Mobile Robot , 2020, Applied Sciences.

[28]  Takashi Kubota,et al.  Robust Path Planning for Slope Traversing Under Uncertainty in Slip Prediction , 2020, IEEE Robotics and Automation Letters.

[29]  Md. Arafat Hossain,et al.  Autonomous robot path planning in dynamic environment using a new optimization technique inspired by Bacterial Foraging technique , 2014, 2013 International Conference on Electrical Information and Communication Technology (EICT).

[30]  Jeng-Shyang Pan,et al.  A multi-objective optimal mobile robot path planning based on whale optimization algorithm , 2016, 2016 IEEE 13th International Conference on Signal Processing (ICSP).

[31]  Hao Wang,et al.  Research on Robot Path Planning Based on Fuzzy Neural Network Algorithm , 2018, 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC).

[32]  Ronald C. Arkin,et al.  Using Genetic Algorithms to Learn Reactive Control Parameters for Autonomous Robotic Navigation , 1994, Adapt. Behav..

[33]  J. Lindsay,et al.  Scale-Optimized Surface Roughness for Topographic Analysis , 2019, Geosciences.

[34]  Sven Koenig,et al.  Any-Angle Path Planning , 2013, AI Mag..

[35]  Qiang Luo,et al.  Research on path planning of mobile robot based on improved ant colony algorithm , 2019, Neural Computing and Applications.

[36]  Dayal R. Parhi,et al.  Analysis of FPA and BA meta-heuristic controllers for optimal path planning of mobile robot in cluttered environment , 2017 .

[37]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[38]  Huihui Sun,et al.  Motion Planning for Mobile Robots—Focusing on Deep Reinforcement Learning: A Systematic Review , 2021, IEEE Access.

[39]  Yuanchang Liu,et al.  The angle guidance path planning algorithms for unmanned surface vehicle formations by using the fast marching method , 2016 .

[40]  Jeffrey R. Johnson,et al.  Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater , 2010 .

[41]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[42]  Mukesh A. Zaveri,et al.  Reactive Navigation of Autonomous Mobile Robot Using Neuro- Fuzzy System , 2011 .

[43]  Evangelos Papadopoulos,et al.  On differential drive robot odometry with application to path planning , 2007, 2007 European Control Conference (ECC).

[44]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[45]  Karl Reichard,et al.  Energy-Aware Path Planning for Skid-Steer Robots Operating on Hilly Terrain , 2020, 2020 American Control Conference (ACC).

[46]  C.S. Ma,et al.  MILP optimal path planning for real-time applications , 2006, 2006 American Control Conference.

[47]  Krzysztof Skonieczny,et al.  Push-Pull Locomotion for Vehicle Extrication , 2015 .

[48]  Sven Koenig,et al.  Speeding-Up Any-Angle Path-Planning on Grids , 2015, ICAPS.

[49]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[50]  Tamir Blum,et al.  PPMC Training Algorithm: A Deep Learning Based Path Planner and Motion Controller , 2020, 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC).

[51]  K. S. Venkatesh,et al.  New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover , 2015, Robotics Auton. Syst..

[52]  Ariel Felner,et al.  Theta*: Any-Angle Path Planning on Grids , 2007, AAAI.

[53]  Chi K. Tse,et al.  A Constraint-Aware Heuristic Path Planner for Finding Energy-Efficient Paths on Uneven Terrains , 2015, IEEE Transactions on Industrial Informatics.

[54]  Anish Pandey,et al.  Path planning in uncertain environment by using firefly algorithm , 2018, Defence Technology.

[55]  Gianfranco Visentin,et al.  Path planning for reconfigurable rovers in planetary exploration , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[56]  Sven Koenig,et al.  Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D , 2010, SOCS.

[57]  Dun-Wei Gong,et al.  Robot Path Planning in Unknown Environments Using Particle Swarm Optimization , 2008, 2008 Fourth International Conference on Natural Computation.

[58]  Chuho Yi,et al.  Map Representation for Robots , 2012, Smart Comput. Rev..

[59]  Zhihua Qu,et al.  A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles , 2004, IEEE Transactions on Robotics.

[60]  Pierre Feyzeau,et al.  Path planning: A 2013 survey , 2013, Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM).

[61]  Joseph Walsh,et al.  Path Planning Techniques for Mobile Robots A Review , 2020, 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE).

[62]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[63]  Kristijan Macek,et al.  Mobile Robot Planning in Dynamic Environments and on Growable Costmaps , 2008, ICRA 2008.

[64]  Edward Schmerling,et al.  Learned Critical Probabilistic Roadmaps for Robotic Motion Planning , 2019 .

[65]  Siddhartha S. Srinivasa,et al.  Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Masahiro Ono,et al.  Risk-aware planetary rover operation: Autonomous terrain classification and path planning , 2015, 2015 IEEE Aerospace Conference.

[67]  Iwan Ulrich,et al.  VFH+: reliable obstacle avoidance for fast mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[68]  Kazuya Yoshida,et al.  Path Planning and Evaluation for Planetary Rovers Based on Dynamic Mobility Index , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  Yangmin Li,et al.  Mobile robot autonomous path planning based on fuzzy logic and filter smoothing in dynamic environment , 2016, 2016 12th World Congress on Intelligent Control and Automation (WCICA).

[70]  Pieter van Gelder,et al.  Global path planning for autonomous ship: A hybrid approach of Fast Marching Square and velocity obstacles methods , 2020 .

[71]  Sven Koenig,et al.  Incremental Phi*: Incremental Any-Angle Path Planning on Grids , 2009, IJCAI.

[72]  R. Bellman Dynamic Programming , 1957, Science.

[73]  Luis Moreno,et al.  Path Planning for Mars Rovers Using the Fast Marching Method , 2015, ROBOT.

[74]  Yukinori Kobayashi,et al.  Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges , 2018, Sensors.

[75]  Suresh Kumar Gawre,et al.  A survey of autonomous mobile robot path planning approaches , 2017, 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE).

[76]  Mohamed Elhoseny,et al.  Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm , 2017, J. Comput. Sci..

[77]  Alban Grastien,et al.  An Optimal Any-Angle Pathfinding Algorithm , 2013, ICAPS.

[78]  Parna Niksirat,et al.  The effects of reduced-gravity on planetary rover mobility , 2020, Int. J. Robotics Res..

[79]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[80]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[81]  Han-Pang Huang,et al.  Dynamic visibility graph for path planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[82]  Jean-Claude Latombe,et al.  Numerical potential field techniques for robot path planning , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[83]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[84]  A. Stentz,et al.  The Field D * Algorithm for Improved Path Planning and Replanning in Uniform and Non-Uniform Cost Environments , 2005 .

[85]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[86]  Weiren Shi,et al.  A Fuzzy-Neural Network Approach To Multisensor Integration For Obstacle Avoidance Of A Mobile Robot , 2009, Intell. Autom. Soft Comput..

[87]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[88]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[89]  Pratap Tokekar,et al.  Energy‐efficient Path Planning for Solar‐powered Mobile Robots * , 2013, J. Field Robotics.

[90]  Dolores Blanco,et al.  Application of the fast marching method for outdoor motion planning in robotics , 2013, Robotics Auton. Syst..

[91]  S. Muthukumaran,et al.  Optimal Path Planning for an Autonomous Mobile Robot Using Dragonfly Algorithm , 2019, International Journal of Simulation Modelling.

[92]  P. Raja,et al.  Optimal path planning of mobile robots: A review , 2012 .

[93]  Wan Kyun Chung,et al.  Incremental hierarchical roadmap construction for efficient path planning , 2018, ETRI Journal.

[94]  Jin Song Dong,et al.  Introduction to Nature-Inspired Algorithms , 2019, Nature-Inspired Optimizers.

[95]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[96]  B. B. V. L. Deepak,et al.  Optimal Path Planning of Mobile Robot using Hybrid Cuckoo Search-Bat Algorithm , 2018 .

[98]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[99]  John Walker,et al.  Initial Design Characteristics, Testing and Performance Optimisation for a Lunar Exploration Micro-Rover Prototype , 2018, Advances in Astronautics Science and Technology.

[100]  Jaime Valls Miró,et al.  A kyno-dynamic metric to plan stable paths over uneven terrain , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[101]  Michael Bosse,et al.  Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments , 2017, J. Field Robotics.

[102]  Masahiro Ono,et al.  Fast approximate clearance evaluation for rovers with articulated suspension systems , 2018, J. Field Robotics.

[103]  Dong Hun Kim,et al.  Escaping route method for a trap situation in local path planning , 2006 .

[104]  Karl Stol,et al.  Power-minimization and energy-reduction autonomous navigation of an omnidirectional Mecanum robot via the dynamic window approach local trajectory planning , 2018 .

[105]  Levin Gerdes,et al.  Dynamic path planning for reconfigurable rovers using a multi-layered grid , 2019, Eng. Appl. Artif. Intell..

[106]  Milan Simic,et al.  Sampling-Based Robot Motion Planning: A Review , 2014, IEEE Access.

[107]  Nikos G. Tsagarakis,et al.  Variable Configuration Planner for Legged-Rolling Obstacle Negotiation Locomotion: Application on the CENTAURO Robot , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[108]  Neil C. Rowe,et al.  Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects , 1990, IEEE Trans. Robotics Autom..

[109]  Kay Chen Tan,et al.  Evolutionary artificial potential fields and their application in real time robot path planning , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[110]  Robin De Keyser,et al.  Heuristic approaches in robot path planning: A survey , 2016, Robotics Auton. Syst..

[111]  Alban Grastien,et al.  Optimal Any-Angle Pathfinding In Practice , 2016, J. Artif. Intell. Res..

[112]  David S. Wettergreen,et al.  FINDING ROUTES FOR EFFICIENT AND SUCCESSFULL SLOPE ASCENT FOR EXPLORATION ROVERS , 2022 .

[113]  Simon X. Yang,et al.  An Adaptive Neuro-fuzzy Controller for Robot Navigation , 2009 .

[114]  Yang Zhao,et al.  Local Path Planning Based on an Improved Dynamic Window Approach in ROS , 2021 .

[115]  Oyas Wahyunggoro,et al.  A Novel of Repulsive Function on Artificial Potential Field for Robot Path Planning , 2016 .

[116]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[117]  Li-Xin Pan,et al.  Research on SBMPC Algorithm for Path Planning of Rescue and Detection Robot , 2020, Discrete Dynamics in Nature and Society.

[118]  Jean-Paul Laumond,et al.  Dynamic path modification for car-like nonholonomic mobile robots , 1997, Proceedings of International Conference on Robotics and Automation.

[119]  R. Murray,et al.  Optimization-Based Navigation for the DARPA Grand Challenge , 2006 .

[120]  K. S. Ravichandran,et al.  A Fuzzy Gain-Based Dynamic Ant Colony Optimization for Path Planning in Dynamic Environments , 2021, Symmetry.

[121]  Marina Valles,et al.  Event-Based Localization in Ackermann Steering Limited Resource Mobile Robots , 2014, IEEE/ASME Transactions on Mechatronics.

[122]  Dinesh Manocha,et al.  Generalized velocity obstacles , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[123]  Jingang Cao,et al.  Robot Global Path Planning Based on an Improved Ant Colony Algorithm , 2016 .

[124]  Noboru Noguchi,et al.  Path planning of an agricultural mobile robot by neural network and genetic algorithm , 1997 .

[125]  Michael Stolz,et al.  Energy-Efficient Driving in Dynamic Environment: Globally Optimal MPC-like Motion Planning Framework , 2018 .

[126]  Hongliang Guo,et al.  A type of biased consensus-based distributed neural network for path planning , 2017 .

[127]  Andrew Kurdila,et al.  Fast Path Re-planning Based on Fast Marching and Level Sets , 2013, J. Intell. Robotic Syst..

[128]  Sheng Liu,et al.  A Chaotic Ant Colony System for Path Planning of Mobile Robot , 2016 .

[129]  Spyros G. Tzafestas,et al.  Motion control for mobile robot obstacle avoidance and navigation: a fuzzy logic-based approach , 2003 .

[130]  Michael T. Wolf,et al.  Safe Maritime Autonomous Navigation With COLREGS, Using Velocity Obstacles , 2014, IEEE Journal of Oceanic Engineering.

[131]  Modeling Slope in a Geographic Information System , 2004 .

[132]  Krzysztof Skonieczny,et al.  Considering Slip-Track for Energy-Efficient Paths of Skid-Steer Rovers , 2020, J. Intell. Robotic Syst..

[133]  Amir Khajepour,et al.  Direction-dependent optimal path planning for autonomous vehicles , 2015, Robotics Auton. Syst..

[134]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[135]  M. I. Malenkov,et al.  Wheel-Walking Propulsion Unit of a Planetary Rover with Active Suspension , 2017 .

[136]  V. Lumelsky,et al.  Dynamic path planning for a mobile automaton with limited information on the environment , 1986 .

[137]  Anthony Stentz,et al.  Global planning on the Mars Exploration Rovers: Software integration and surface testing , 2009, J. Field Robotics.

[138]  Mohamed Elhoseny,et al.  Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm , 2019, Cluster Computing.

[139]  P. Lions On the Hamilton-Jacobi-Bellman equations , 1983 .

[140]  Tae-Yong Kuc,et al.  Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[141]  Siddhartha S. Srinivasa,et al.  Regionally accelerated batch informed trees (RABIT*): A framework to integrate local information into optimal path planning , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[142]  Robin De Keyser,et al.  A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization , 2017, Appl. Soft Comput..

[143]  Ron Kimmel,et al.  Optimal Algorithm for Shape from Shading and Path Planning , 2001, Journal of Mathematical Imaging and Vision.

[144]  Buniyamin,et al.  A Simple Local Path Planning Algorithm for Autonomous Mobile Robots , 2010 .

[145]  Anish Pandey,et al.  Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller , 2014, 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO).

[146]  Brahim Bouzouia,et al.  Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control , 2017, Robotics Auton. Syst..

[147]  Roland Siegwart,et al.  3D path planning and execution for search and rescue ground robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[148]  Ryo Takei,et al.  Optimal Trajectories of Curvature Constrained Motion in the Hamilton–Jacobi Formulation , 2013, J. Sci. Comput..

[149]  María Dolores Rodríguez-Moreno,et al.  S-Theta: low steering path-planning algorithm , 2012, SGAI Conf..

[150]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[151]  Vivake M. Asnani,et al.  Benefit of "Push-pull" Locomotion for Planetary Rover Mobility , 2012 .

[152]  María Dolores Rodríguez-Moreno,et al.  3Dana: A path planning algorithm for surface robotics , 2017, Eng. Appl. Artif. Intell..

[153]  Jiangming Kan,et al.  3D Path Planning for the Ground Robot with Improved Ant Colony Optimization † , 2019, Sensors.

[154]  Keiji Nagatani,et al.  Quince : A Collaborative Mobile Robotic Platform for Rescue Robots Research and Development , 2010 .

[155]  Ran Dai,et al.  Time-Optimal Path Planning With Power Schedules for a Solar-Powered Ground Robot , 2017, IEEE Transactions on Automation Science and Engineering.

[156]  Du Xin,et al.  Neural network and genetic algorithm based global path planning in a static environment , 2005 .

[157]  Y. Petillot,et al.  Underwater path planing using fast marching algorithms , 2005, Europe Oceans 2005.

[158]  Chi K. Tse,et al.  Shortest Path Planning for Energy-Constrained Mobile Platforms Navigating on Uneven Terrains , 2018, IEEE Transactions on Industrial Informatics.

[159]  Ning Li,et al.  An Improved Dynamic Window Approach Integrated Global Path Planning , 2019, IEEE International Conference on Robotics and Biomimetics.

[160]  Raffaello D'Andrea,et al.  Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle , 2004, Robotics Auton. Syst..

[161]  Jaime Valls Miró,et al.  Planning Stable and Efficient Paths for Reconfigurable Robots On Uneven Terrain , 2017, J. Intell. Robotic Syst..

[162]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[163]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[164]  Javier V. Gómez,et al.  Fast Methods for Eikonal Equations: An Experimental Survey , 2015, IEEE Access.

[165]  Mehmet Önder Efe,et al.  Online path planning of mobile robot using grasshopper algorithm in a dynamic and unknown environment , 2020, J. Exp. Theor. Artif. Intell..

[166]  Marta Covadonga Mora Aguilar,et al.  Path Planning Based on Parametric Curves , 2017 .

[167]  Emmanuel G. Collins,et al.  Nonlinear Model Predictive Control using sampling and goal-directed optimization , 2010, 2010 IEEE International Conference on Control Applications.

[168]  Barry Lennox,et al.  Robotic Exploration of an Unknown Nuclear Environment Using Radiation Informed Autonomous Navigation , 2021, Robotics.

[169]  Hyunwoo Shin,et al.  Path Planning for Mobile Agents Using a Genetic Algorithm with a Direction Guided Factor , 2018 .

[170]  Jie Bai,et al.  The mobile robot path planning with motion constraints based on Bug algorithm , 2017, 2017 Chinese Automation Congress (CAC).

[171]  Farhad Bayat,et al.  Mobile robots path planning: Electrostatic potential field approach , 2018, Expert Syst. Appl..

[172]  Dayal R. Parhi,et al.  A New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System , 2014 .

[173]  K. S. Ravichandran,et al.  Energy-efficient green ant colony optimization for path planning in dynamic 3D environments , 2021, Soft Comput..

[174]  Kazuya Yoshida,et al.  Dynamic Simulation-Based Action Planner for a Reconfigurable Hybrid Leg–Wheel Planetary Exploration Rover , 2010, Adv. Robotics.

[175]  Sven Koenig,et al.  An Empirical Comparison of Any-Angle Path-Planning Algorithms , 2015, SOCS.

[176]  Thierry Siméon,et al.  Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[177]  Frédéric Gibou,et al.  A parallel fast sweeping method for the Eikonal equation , 2013, J. Comput. Phys..

[178]  Anish Pandey,et al.  Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm , 2017 .

[179]  Adem Tuncer,et al.  Dynamic path planning of mobile robots with improved genetic algorithm , 2012, Comput. Electr. Eng..

[180]  G. Reina,et al.  A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains , 2020 .

[181]  Manuel F. Silva,et al.  A Survey on Path Planning Algorithms for Mobile Robots , 2019, 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).

[182]  Chaymaa Lamini,et al.  Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning , 2018 .

[183]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[184]  Christopher M. Schlick,et al.  Design and comparative evaluation of an iterative contact point estimation method for static stability estimation of mobile actively reconfigurable robots , 2015, Robotics Auton. Syst..

[185]  Yudong Zhang,et al.  A survey of energy-efficient motion planning for wheeled mobile robots , 2020, Ind. Robot.

[186]  Luis Moreno,et al.  The Path to Efficiency: Fast Marching Method for Safer, More Efficient Mobile Robot Trajectories , 2013, IEEE Robotics & Automation Magazine.

[187]  Torsten Bertram,et al.  Trajectory modification considering dynamic constraints of autonomous robots , 2012, ROBOTIK.

[188]  Navinda Kottege,et al.  Virtual Surfaces and Attitude Aware Planning and Behaviours for Negative Obstacle Navigation , 2020, IEEE Robotics and Automation Letters.

[189]  Anis Koubaa,et al.  Global path planning for mobile robots in large-scale grid environments using genetic algorithms , 2013, 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR).

[190]  Jiang Wu,et al.  Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field , 2018 .

[191]  Lydia Tapia,et al.  PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-Based Planning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[192]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[193]  Sunglok Choi,et al.  Any-angle path planning on non-uniform costmaps , 2011, 2011 IEEE International Conference on Robotics and Automation.

[194]  Mohd. Nayab Zafar,et al.  Methodology for Path Planning and Optimization of Mobile Robots: A Review , 2018 .

[195]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[196]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[197]  G. Horvath,et al.  Artificial neural network based local motion planning of a wheeled mobile robot , 2010, 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI).

[198]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[199]  Jonathan Schaeffer,et al.  Any-Angle Path Planning for Computer Games , 2011, AIIDE.

[200]  Chao Yun,et al.  Global path planning for explosion-proof robot based on improved ant colony optimization , 2016, 2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS).

[201]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[202]  Jianhua Zhang,et al.  Robot path planning in uncertain environment using multi-objective particle swarm optimization , 2013, Neurocomputing.

[203]  Debasish Ghose,et al.  Obstacle avoidance in a dynamic environment: a collision cone approach , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[204]  Z. Cai,et al.  Global path planning approach based on ant colony optimization algorithm , 2006 .

[205]  Dayal R. Parhi,et al.  Cuckoo Search Algorithm for the Mobile Robot Navigation , 2013, SEMCCO.

[206]  Xi Yang,et al.  Fast Marching-Based Path Generating Algorithm in Anisotropic Environment With Perturbations , 2020, IEEE Access.

[207]  Marco Pavone,et al.  Group Marching Tree: Sampling-Based Approximately Optimal Motion Planning on GPUs , 2017, 2017 First IEEE International Conference on Robotic Computing (IRC).

[208]  David Wettergreen,et al.  Inching locomotion for planetary rover mobility , 2011, 2011 Aerospace Conference.

[209]  Nildeep Patel,et al.  The ExoMars rover locomotion subsystem , 2010 .

[210]  Jonathan Schaeffer,et al.  Block A*: Database-Driven Search with Applications in Any-Angle Path-Planning , 2011, AAAI.

[211]  Anish Pandey,et al.  A review: On path planning strategies for navigation of mobile robot , 2019, Defence Technology.

[212]  M.K.A. Ahamed Khan,et al.  Mobile robot path planning using Ant Colony Optimization , 2016, 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).

[213]  Wenwen Liu,et al.  Predictive navigation of unmanned surface vehicles in a dynamic maritime environment when using the fast marching method , 2017 .

[214]  Chia Hsun Chiang,et al.  A comparative study of implementing Fast Marching Method and A* SEARCH for mobile robot path planning in grid environment: Effect of map resolution , 2007, 2007 IEEE Workshop on Advanced Robotics and Its Social Impacts.

[215]  María Dolores Rodríguez-Moreno,et al.  3Dana: Path Planning on 3D Surfaces , 2016, SGAI Conf..

[216]  Weiliang Xu,et al.  Energy Efficient Dynamic Window Approach for Local Path Planning in Mobile Service Robotics , 2016 .

[217]  M. Pechoucek,et al.  Accelerated A * Trajectory Planning : Grid-based Path Planning Comparison , 2009 .

[218]  Mehmet Önder Efe,et al.  Multi-objective grasshopper optimization algorithm for robot path planning in static environments , 2018, 2018 IEEE International Conference on Industrial Technology (ICIT).

[219]  Jonathan D. Gammell,et al.  Advanced BIT* (ABIT*): Sampling-Based Planning with Advanced Graph-Search Techniques , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[220]  Dante Kalise,et al.  Optimal control : novel directions and applications , 2017 .

[221]  Han-ye Zhang,et al.  Path Planning for the Mobile Robot: A Review , 2018, Symmetry.