On Comparing the Power of Mobile Robots

Minimalist models have been studied for a broad array of tasks in robotics. In this paper, we consider the taskcompleting power of robots in terms of the sensors and actuators with which the robot is equipped. Our goal is to understand the relative power of different sets of sensors and actuators and to determine which of these sets enable the robot to complete its task. We define robots as collections of robotic primitives and provide a formal method for comparing the sensing and actuation power of robots constructed from these primitives. This comparison, which is based on the how the robots progress through their information spaces, induces a partial order over the set of robot systems. We prove some basic properties of this partial order and then apply it to a limited-sensing version of the global localization problem.

[1]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[2]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[3]  Sven Koenig,et al.  An Approximation Algorithm for the Robot Localization Problem , 2004 .

[4]  Jason M. O'Kane,et al.  Global localization using odometry , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[6]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[7]  Steven M. LaValle,et al.  Gap Navigation Trees: Minimal Representation for Visibility-based Tasks , 2004, WAFR.

[8]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[9]  Daniel E. Whitney,et al.  Real robots don't need jigs , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[10]  Kenneth Basye,et al.  Map Learning with Indistinguishable Locations , 1989, UAI.

[11]  Vladimir J. Lumelsky,et al.  Provable strategies for vision-guided exploration in three dimensions , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[12]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[13]  Michael A. Bender,et al.  The power of a pebble: exploring and mapping directed graphs , 1998, STOC '98.

[14]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Kokichi Sugihara,et al.  Some location problems for robot navigation using a single camera , 1988, Computer Vision Graphics and Image Processing.

[16]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[17]  Howie Choset,et al.  Robust sensor-based coverage of unstructured environments , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[18]  Kenneth Y. Goldberg,et al.  Bayesian grasping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[19]  Howie Choset,et al.  Complete sensor-based coverage with extended-range detectors: a hierarchical decomposition in terms of critical points and Voronoi diagrams , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  M. Yamashita,et al.  On-Line Polygon Search by a Six-State Boundary 1-Searcher , 2003 .

[21]  Pankaj K. Agarwal,et al.  Minimal trap design , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[22]  Mark H. Overmars,et al.  Geometry and Part Feeding , 2000, Sensor Based Intelligent Robots.

[23]  Gregory Dudek,et al.  Randomized Algorithms for Minimum Distance Localization , 2007, Int. J. Robotics Res..

[24]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[26]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[27]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[28]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[29]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[30]  Kevin M. Lynch,et al.  Parts Feeding on a Conveyor with a One Joint Robot , 2000, Algorithmica.

[31]  Jason M. O'Kane,et al.  Almost-Sensorless Localization , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[32]  Vladimir J. Lumelsky,et al.  An algorithm for maze searching with azimuth input , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[33]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  Kostas E. Bekris,et al.  On the feasibility of using wireless ethernet for indoor localization , 2004, IEEE Transactions on Robotics and Automation.

[35]  Howie Choset,et al.  Sensor Based Planing, Part I: The Generalized Voronoi Graph , 1995, ICRA.

[36]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[37]  Mark Moll,et al.  Manipulation of Pose Distributions , 2002, Int. J. Robotics Res..

[38]  Erik D. Demaine,et al.  Robot Localization without Depth Perception , 2002, SWAT.

[39]  Jon M. Kleinberg,et al.  The localization problem for mobile robots , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[40]  Ken Goldberg,et al.  A complete algorithm for designing passive fences to orient parts , 1997 .

[41]  Ronen I. Brafman,et al.  On the Knowledge Requirements of Tasks , 1998, Artif. Intell..

[42]  Gregory Dudek,et al.  Localizing a robot with minimum travel , 1995, SODA '95.

[43]  Rudolf Fleischer,et al.  Optimal Robot Localization in Trees , 2001, Inf. Comput..