Cross-entropy motion planning

This paper is concerned with motion planning for non-linear robotic systems operating in constrained environments. A method for computing high-quality trajectories is proposed building upon recent developments in sampling-based motion planning and stochastic optimization. The idea is to equip sampling-based methods with a probabilistic model that serves as a sampling distribution and to incrementally update the model during planning using data collected by the algorithm. At the core of the approach lies the cross-entropy method for the estimation of rare-event probabilities. The cross-entropy method is combined with recent optimal motion planning methods such as the rapidly exploring random trees (RRT*) in order to handle complex environments. The main goal is to provide a framework for consistent adaptive sampling that correlates the spatial structure of trajectories and their computed costs in order to improve the performance of existing planning methods.

[1]  Tito Homem-de-Mello,et al.  A Study on the Cross-Entropy Method for Rare-Event Probability Estimation , 2007, INFORMS J. Comput..

[2]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Michiel van de Panne,et al.  Faster Motion Planning Using Learned Local Viability Models , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Dirk P. Kroese,et al.  The Cross-Entropy Method for Continuous Multi-Extremal Optimization , 2006 .

[5]  Dirk P. Kroese,et al.  Convergence properties of the cross-entropy method for discrete optimization , 2007, Oper. Res. Lett..

[6]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  David Hsu,et al.  Workspace importance sampling for probabilistic roadmap planning , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Siddhartha S. Srinivasa,et al.  An Equivalence Relation for Local Path Sets , 2010, WAFR.

[9]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[10]  P. Deb Finite Mixture Models , 2008 .

[11]  Michael C. Fu,et al.  A Model Reference Adaptive Search Method for Global Optimization , 2007, Oper. Res..

[12]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[13]  G. Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 2 , 2012 .

[14]  Ping Hu,et al.  On the performance of the Cross-Entropy method , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[15]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[16]  Lydia E. Kavraki,et al.  Fast Tree-Based Exploration of State Space for Robots with Dynamics , 2004, WAFR.

[17]  Emilio Frazzoli,et al.  Optimal kinodynamic motion planning using incremental sampling-based methods , 2010, 49th IEEE Conference on Decision and Control (CDC).

[18]  Ross A. Knepper,et al.  Real-time informed path sampling for motion planning search , 2012, Int. J. Robotics Res..

[19]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[20]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[21]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[22]  Kostas E. Bekris,et al.  Balancing state-space coverage in planning with dynamics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[23]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[24]  Oliver Brock,et al.  Balancing exploration and exploitation in motion planning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[26]  Gildardo Sánchez-Ante,et al.  Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  Ronen I. Brafman,et al.  R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning , 2001, J. Mach. Learn. Res..

[28]  Matthias W. Seeger,et al.  PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..

[29]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[30]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[31]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[32]  R. Murray,et al.  Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems , 1995 .

[33]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[34]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Oliver Brock,et al.  Toward Optimal Configuration Space Sampling , 2005, Robotics: Science and Systems.

[36]  Oliver Brock,et al.  Sampling-Based Motion Planning Using Predictive Models , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[38]  Steven M. LaValle,et al.  Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms , 2010, WAFR.

[39]  Nancy M. Amato,et al.  Toggle PRM: Simultaneous mapping of C-free and C-obstacle - A study in 2D - , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[41]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[42]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[43]  L. Margolin,et al.  On the Convergence of the Cross-Entropy Method , 2005, Ann. Oper. Res..

[44]  G. Chirikjian Stochastic models, information theory, and lie groups , 2012 .

[45]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[46]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[47]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[48]  Warren B. Powell,et al.  Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics) , 2007 .

[49]  Marin Kobilarov,et al.  Cross-Entropy Randomized Motion Planning , 2011, Robotics: Science and Systems.

[50]  Dirk P. Kroese,et al.  Global likelihood optimization via the cross-entropy method with an application to mixture models , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[51]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo Method (Wiley Series in Probability and Statistics) , 1981 .

[52]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[53]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[54]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[55]  Nancy M. Amato,et al.  Algorithmic Foundations of Robotics XIV, Proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics, WAFR 2021, Oulu, Finland, June 21-23, 2021 , 2021, WAFR.

[56]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[57]  James J. Kuffner,et al.  Adaptive workspace biasing for sampling-based planners , 2008, 2008 IEEE International Conference on Robotics and Automation.

[58]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[59]  Andrew W. Moore,et al.  Memory-based Stochastic Optimization , 1995, NIPS.

[60]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.