A Neural Network Model of

[1]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[2]  N. Logothetis,et al.  View-dependent object recognition by monkeys , 1994, Current Biology.

[3]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[4]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[6]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[7]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[8]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[9]  Tomaso Poggio,et al.  Image Representations for Visual Learning , 1996, Science.

[10]  Anil K. Jain,et al.  Handbook of Face Recognition, 2nd Edition , 2011 .

[11]  Hanchuan Peng,et al.  Energy function for learning invariance in multilayer perceptron , 1998 .

[12]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[13]  P. D. Spear,et al.  Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey , 1996, Visual Neuroscience.

[14]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[15]  F. Campbell,et al.  Spatial-frequency discrimination in human vision. , 1970, Journal of the Optical Society of America.

[16]  R. Shepard,et al.  Mental Rotation of Three-Dimensional Objects , 1971, Science.

[17]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[18]  A. King,et al.  Neural processing: The logic of multiplication in single neurons , 2001, Current Biology.

[19]  Andrew Zisserman,et al.  Introduction—towards a new framework for vision , 1992 .

[20]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[21]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[22]  P. Mamassian,et al.  Prior knowledge on the illumination position , 2001, Cognition.

[23]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[24]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[25]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[26]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[27]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[28]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[29]  Roland Baddeley,et al.  Optimal, Unsupervised Learning in Invariant Object Recognition , 1997, Neural Computation.

[30]  Claus Bundesen,et al.  Visual Selective Attention: Outlines of a Choice Model, a Race Model and a Computational Theory , 1998 .

[31]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[33]  Ralph Linsker,et al.  Towards an Organizing Principle for a Layered Perceptual Network , 1987, NIPS.

[34]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[35]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[36]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[37]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[38]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  M. Hasselmo,et al.  Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[40]  Masakazu Konishi,et al.  Robustness of Multiplicative Processes in Auditory Spatial Tuning , 2004, The Journal of Neuroscience.

[41]  A. Treves,et al.  The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex , 1997, Experimental Brain Research.

[42]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[43]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[44]  C. Furmanski,et al.  Perceptual learning in object recognition: object specificity and size invariance , 2000, Vision Research.

[45]  H. Barlow Cerebral Cortex as Model Builder , 1987 .

[46]  J. Hummel,et al.  The role of attention in priming for left-right reflections of object images: evidence for a dual representation of object shape. , 1998, Journal of experimental psychology. Human perception and performance.

[47]  G. Wallis,et al.  Spatio-temporal influences at the neural level of object recognition. , 1998, Network.

[48]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[49]  Adam Krzyzak,et al.  Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms , 2009, Pattern Recognit..

[50]  B. Frost,et al.  Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons , 1998, Nature Neuroscience.

[51]  N. Sutherland Outlines of a theory of visual pattern recognition in animals and man , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[52]  Irving Biederman,et al.  Human image understanding: Recent research and a theory , 1985, Comput. Vis. Graph. Image Process..

[53]  Luc Van Gool,et al.  Edinburgh Research Explorer Simultaneous Object Recognition and Segmentation by Image Exploration , 2022 .

[54]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[55]  Azriel Rosenfeld,et al.  3-D Shape Recovery Using Distributed Aspect Matching , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  M M Merzenich,et al.  Temporal information transformed into a spatial code by a neural network with realistic properties , 1995, Science.

[57]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[58]  Guy Wallis,et al.  Presentation order affects human object recognition learning , 1996 .

[59]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[60]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[61]  I. Vol,et al.  Similarity between Fourier transforms of objects predicts their experimental confusions , 1990, Perception & psychophysics.

[62]  Rajesh P. N. Rao,et al.  Probabilistic Models of the Brain: Perception and Neural Function , 2002 .

[63]  R. Shepard,et al.  Mental Images and Their Transformations , 1982 .

[64]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[65]  A. Treisman,et al.  Object tokens, attention, and visual memory. , 1996 .

[66]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[67]  S. Edelman,et al.  Orientation dependence in the recognition of familiar and novel views of three-dimensional objects , 1992, Vision Research.

[68]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  Rosemarie Velik,et al.  Discrete Fourier Transform Computation Using Neural Networks , 2008, 2008 International Conference on Computational Intelligence and Security.

[70]  E. Rolls Memory, Attention, and Decision-Making: A unifying computational neuroscience approach , 2007 .

[71]  A. Damasio,et al.  Face agnosia and the neural substrates of memory. , 1990, Annual review of neuroscience.

[72]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[73]  Laurenz Wiskott,et al.  How Does Our Visual System Achieve Shift and Size Invariance , 2004 .

[74]  E. Rolls,et al.  On the design of neural networks in the brain by genetic evolution , 2000, Progress in Neurobiology.

[75]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[76]  G. Legge,et al.  Mr. Chips 2002: new insights from an ideal-observer model of reading , 2002, Vision Research.

[77]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[78]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[79]  L. M. Ward,et al.  Orienting of Attention , 2008 .

[80]  Daeyeol Lee,et al.  Order-Dependent Modulation of Directional Signals in the Supplementary and Presupplementary Motor Areas , 2007, The Journal of Neuroscience.

[81]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[82]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[83]  Paul Oppenheim,et al.  Der Gestaltbegriff im Lichte der neuen Logik , 1937 .

[84]  Edmund T. Rolls,et al.  Invariant Object Recognition in the Visual System with Novel Views of 3D Objects , 2002, Neural Computation.

[85]  Karl Georg Götz,et al.  Processing of Cues from the Moving Environment in the Drosophila Navigation System , 1972 .

[86]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[87]  Jochen Triesch,et al.  Shared Features for Scalable Appearance-Based Object Recognition , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[88]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[89]  Kunihiko Fukushima,et al.  Cognitron: A self-organizing multilayered neural network , 1975, Biological Cybernetics.

[90]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[91]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[93]  M. Tarr,et al.  Mental rotation and orientation-dependence in shape recognition , 1989, Cognitive Psychology.

[94]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[96]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[97]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[98]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[99]  J Zihl,et al.  The "motion-blind" patient: low-level spatial and temporal filters , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[101]  S. Tipper The Negative Priming Effect: Inhibitory Priming by Ignored Objects , 1985, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[102]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[103]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[104]  Shimon Ullman,et al.  Recognizing solid objects by alignment with an image , 1990, International Journal of Computer Vision.

[105]  Patrick Henry Winston,et al.  Learning structural descriptions from examples , 1970 .

[106]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[107]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[108]  E T Rolls,et al.  Invariant object recognition with trace learning and multiple stimuli present during training , 2007, Network.

[109]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[111]  M. Tarr,et al.  Orientation Priming of Novel Shapes in the Context of Viewpoint-Dependent Recognition , 1997, Perception.

[112]  V. Bruce,et al.  Visual Perception: Physiology, Psychology and Ecology , 1985 .

[113]  Z. Pizlo Perception viewed as an inverse problem , 2001, Vision Research.

[114]  Gang-Hwa Lee,et al.  A Dual Log-polar Map Rotation and Scale-Invariant Image Transform , 2008 .

[115]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[116]  E. Rolls The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus , 1989 .

[117]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[118]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[119]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[120]  G. Wallis How neurons learn to associate 2D-views in invariant object recognition , 1996 .

[121]  Stefano Panzeri,et al.  On Decoding the Responses of a Population of Neurons from Short Time Windows , 1999, Neural Computation.

[122]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[123]  A. Cowey,et al.  8 – COLOR PERCEPTION: Retina to Cortex , 1990 .

[124]  Cordelia Schmid,et al.  3D object modeling and recognition using affine-invariant patches and multi-view spatial constraints , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[125]  D. George,et al.  A hierarchical Bayesian model of invariant pattern recognition in the visual cortex , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[126]  Jochen Triesch,et al.  Toward a Unified Probabilistic Framework for Object Recognition and Segmentation , 2005, ISVC.

[127]  JEFFREY WOOD,et al.  Invariant pattern recognition: A review , 1996, Pattern Recognit..

[128]  Jochen Triesch,et al.  Learning to Attend - From Bottom-Up to Top-Down , 2008, WAPCV.

[129]  G H Recanzone,et al.  Effects of attention on MT and MST neuronal activity during pursuit initiation. , 2000, Journal of neurophysiology.

[130]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[131]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[132]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[133]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[134]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[135]  Suzanna Becker,et al.  Learning to Categorize Objects Using Temporal Coherence , 1992, NIPS.

[136]  M. Tarr,et al.  Visual object recognition: do we know more now than we did 20 years ago? , 2007, Annual review of psychology.

[137]  Shimon Edelman,et al.  Representation, similarity, and the chorus of prototypes , 1993, Minds and Machines.

[138]  C. Dane An object-centered three-dimensional model builder , 1982 .

[139]  D. Tolhurst Adaptation to square‐wave gratings: inhibition between spatial frequency channels in the human visual system , 1972, The Journal of physiology.

[140]  George Wolberg,et al.  Robust image registration using log-polar transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[141]  Isabel Gauthier,et al.  The development of face expertise , 2001, Current Opinion in Neurobiology.

[142]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[143]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[144]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[145]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[146]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[147]  J. R. Lee,et al.  How Does the Striate Cortex Begin the Reconstruction of the Visual World? , 1971, Science.

[148]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[149]  Robert C. Bolles,et al.  Locating Partially Visible Objects: The Local Feature Focus Method , 1980, AAAI.

[150]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  M. Tovée,et al.  The responses of neurons in the temporal cortex of primates, and face identification and detection , 1994, Experimental Brain Research.

[152]  James V. Stone,et al.  A learning rule for extracting spatio-temporal invariances , 1995 .

[153]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[154]  Antonio Torralba,et al.  Statistical context priming for object detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[155]  Margaret S. Livingstone,et al.  Two-Dimensional Substructure of Stereo and Motion Interactions in Macaque Visual Cortex , 2003, Neuron.

[156]  Isabel Gauthier,et al.  Three-dimensional object recognition is viewpoint dependent , 1998, Nature Neuroscience.

[157]  Edmund T. Rolls,et al.  The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain , 1990 .

[158]  Daniel Kersten,et al.  Bayesian models of object perception , 2003, Current Opinion in Neurobiology.

[159]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[160]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[161]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[162]  Laurenz Wiskott,et al.  Slowness: An Objective for Spike-Timing–Dependent Plasticity? , 2007, PLoS Comput. Biol..

[163]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[164]  Long Zhu,et al.  Unsupervised learning of probabilistic object models (POMs) for object classification, segmentation and recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[165]  J. Hummel,et al.  An architecture for rapid, hierarchical structural description , 1996 .

[166]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[167]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[168]  R. Yin Looking at Upside-down Faces , 1969 .

[169]  Kunihiko Fukushima,et al.  Analysis of the process of visual pattern recognition by the neocognitron , 1989, Neural Networks.

[170]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[171]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[172]  Edmund T. Rolls,et al.  Invariant visual object recognition: A model, with lighting invariance , 2006, Journal of Physiology-Paris.

[173]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[174]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[175]  C. Baker,et al.  Residual motion perception in a "motion-blind" patient, assessed with limited-lifetime random dot stimuli , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[176]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[177]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Juan D Delius,et al.  Mental-Rotation Effect: A Function of Elementary Stimulus Discriminability? , 1996 .

[179]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[180]  Chris J. Tinsley,et al.  The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. , 2003, Journal of neurophysiology.

[181]  Brent Doiron,et al.  Deterministic Multiplicative Gain Control with Active Dendrites , 2005, The Journal of Neuroscience.

[182]  Heinrich H. Bülthoff,et al.  Image-based object recognition , 1995 .

[183]  R. Nicoll,et al.  Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices , 1990, Neuron.

[184]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[185]  A. Treisman Perceptual grouping and attention in visual search for features and for objects. , 1982, Journal of experimental psychology. Human perception and performance.

[186]  Simon B. Laughlin,et al.  Form and function in retinal processing , 1987, Trends in Neurosciences.

[187]  Edmund T. Rolls,et al.  A Model of Invariant Object Recognition in the Visual System: Learning Rules, Activation Functions, Lateral Inhibition, and Information-Based Performance Measures , 2000, Neural Computation.

[188]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[189]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[190]  J. Rothwell Principles of Neural Science , 1982 .

[191]  I. Biederman,et al.  Evidence for Complete Translational and Reflectional Invariance in Visual Object Priming , 1991, Perception.

[192]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[193]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[194]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[195]  John Cerella,et al.  Pigeons and perceptrons , 1986, Pattern Recognit..

[196]  M J Tarr,et al.  Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). , 1995, Journal of experimental psychology. Human perception and performance.

[197]  Timothée Masquelier,et al.  Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity , 2007, PLoS Comput. Biol..

[198]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[199]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[200]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[201]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[202]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[203]  D. H. Kelly,et al.  Pattern detection and the two-dimensional fourier transform: Circular targets , 1975, Vision Research.

[204]  I. Biederman,et al.  Size invariance in visual object priming , 1992 .

[205]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[206]  M. Nixon,et al.  Shape classification using multiscale Fourier-based description in 2-D space , 2008, 2008 9th International Conference on Signal Processing.

[207]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[208]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[209]  Amnon Shashua,et al.  Algebraic Functions For Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[210]  Michael Potmesil,et al.  Generating Models of Solid Objects by Matching 3D Surface Segments , 1983, IJCAI.

[211]  D. Knill Learning Bayesian priors for depth perception. , 2007, Journal of vision.

[212]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[213]  Jean Ponce,et al.  Describing surfaces , 1985, Comput. Vis. Graph. Image Process..

[214]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[215]  Daniel Kersten,et al.  High-level Vision as Statistical Inference , 1999 .

[216]  George A. Gescheider,et al.  Psychophysics: Method and theory , 1976 .

[217]  Ione Fine,et al.  Visual segmentation based on the luminance and chromaticity statistics of natural scenes , 2010 .

[218]  A. Oliva,et al.  Diagnostic Colors Mediate Scene Recognition , 2000, Cognitive Psychology.

[219]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[220]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[221]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[222]  S. Treue Visual attention: the where, what, how and why of saliency , 2003, Current Opinion in Neurobiology.

[223]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[224]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[225]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[226]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[227]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[228]  Paul R. Schrater,et al.  Vision, Psychophysics and Bayes , 2001 .

[229]  Ewa Wojciulik Nancy Kanwisher Implicit but not Explicit Feature Binding in a Balint's Patient , 1998 .

[230]  I. Biederman,et al.  Priming contour-deleted images: Evidence for intermediate representations in visual object recognition , 1991, Cognitive Psychology.

[231]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[232]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[233]  M Konishi,et al.  Auditory Spatial Receptive Fields Created by Multiplication , 2001, Science.

[234]  Joel L. Davis,et al.  Visual attention and cortical circuits , 2001 .

[235]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[236]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[237]  Yu Wei,et al.  Combining adaptive sigmoid packet and trace neural network for fast invariance-learning , 1998 .

[238]  M. Tarr,et al.  Do viewpoint-dependent mechanisms generalize across members of a class? , 1998, Cognition.

[239]  W. Schneider VAM: A neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action , 1995 .

[240]  Niko Wilbert,et al.  Invariant Object Recognition with Slow Feature Analysis , 2008, ICANN.

[241]  Kevan A. C. Martin,et al.  From enzymes to visual perception: a bridge too far? , 1988, Trends in Neurosciences.

[242]  Holger G. Krapp,et al.  Multiplication and stimulus invariance in a looming-sensitive neuron , 2004, Journal of Physiology-Paris.

[243]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[244]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[245]  J. D. Mollon,et al.  The club-sandwich mystery , 1990, Nature.

[246]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[247]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[248]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[249]  Matthias Bethge,et al.  Unsupervised learning of a steerable basis for invariant image representations , 2007, Electronic Imaging.

[250]  S. M. Williams,et al.  Central Visual Pathways , 2001 .

[251]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[252]  Laurence T. Maloney,et al.  Statistical Decision Theory and Biological Vision , 2005 .

[253]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[254]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[255]  Paul R. Schrater,et al.  Pattern inference theory: A probabilistic approach to vision , 2002 .

[256]  S. Palmer Hierarchical structure in perceptual representation , 1977, Cognitive Psychology.

[257]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[258]  Myung Woo,et al.  Biologically-Inspired Translation, Scale, and rotation invariant object recognition models , 2007 .

[259]  Rajesh P. N. Rao,et al.  Bayesian inference and attentional modulation in the visual cortex , 2005, Neuroreport.

[260]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[261]  Péter Szigetvári,et al.  What and When? , 2019, Inauguration and Liturgical Kingship in the Long Twelfth Century.

[262]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[263]  J. Maunsell,et al.  Attentional Modulation of Motion Integration of Individual Neurons in the Middle Temporal Visual Area , 2004, The Journal of Neuroscience.

[264]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[265]  W. Pitts,et al.  How we know universals; the perception of auditory and visual forms. , 1947, The Bulletin of mathematical biophysics.

[266]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[267]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[268]  Jon H. Kaas,et al.  Hierarchical, parallel, and serial arrangements of sensory cortical areas: connection patterns and functional aspects , 1991, Current Opinion in Neurobiology.

[269]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[270]  Bin Xiao,et al.  Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier-Mellin transforms , 2007, Pattern Recognit..

[271]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[272]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[273]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[274]  Jacob feldman,et al.  Bayesian contour integration , 2001, Perception & psychophysics.

[275]  Cordelia Schmid,et al.  Semi-Local Affine Parts for Object Recognition , 2004, BMVC.

[276]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[277]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[278]  Jürgen Jost,et al.  On the gestalt concept , 2008, Theory in Biosciences.

[279]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[280]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[281]  Karl Georg Götz,et al.  The optomotor equilibrium of theDrosophila navigation system , 1975, Journal of comparative physiology.

[282]  S. Tipper,et al.  Negative priming between pictures and words in a selective attention task: Evidence for semantic processing of ignored stimuli , 1988, Memory & cognition.

[283]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[284]  Bartlett W. Mel,et al.  Minimizing Binding Errors Using Learned Conjunctive Features , 2000, Neural Computation.

[285]  M. Tarr,et al.  Testing conditions for viewpoint invariance in object recognition. , 1997, Journal of experimental psychology. Human perception and performance.

[286]  Rajesh P. N. Rao,et al.  Learning Lie Groups for Invariant Visual Perception , 1998, NIPS.

[287]  Laurenz Wiskott,et al.  Learning invariance manifolds , 1998, Neurocomputing.

[288]  S. Ullman Three-dimensional object recognition based on the combination of views , 1998, Cognition.

[289]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[290]  Peter H. Schiller,et al.  Area V4 of the Primate Visual Cortex , 1994 .

[291]  Qing Wang,et al.  Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[292]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[293]  Edmund T. Rolls,et al.  Position invariant recognition in the visual system with cluttered environments , 2000, Neural Networks.

[294]  P. Jolicoeur The time to name disoriented natural objects , 1985, Memory & cognition.

[295]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[296]  J. C. Anderson,et al.  Dendritic asymmetry cannot account for directional responses of neurons in visual cortex , 1999, Nature Neuroscience.

[297]  W. Reichardt Movement perception in insects , 1969 .

[298]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[299]  Donald I. A. MacLeod,et al.  Influence of scene statistics on colour constancy , 2002, Nature.

[300]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[301]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[302]  Mahmoud I. Khalil,et al.  Invariant 2D object recognition using the wavelet modulus maxima , 2000, Pattern Recognit. Lett..

[303]  O. G. Selfridge,et al.  Pandemonium: a paradigm for learning , 1988 .

[304]  Rebecca Lawson,et al.  Object Recognition under Sequential Viewing Conditions: Evidence for Viewpoint-Specific Recognition Procedures , 1994, Perception.

[305]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[306]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .

[307]  W. Hayward Effects of outline shape in object recognition , 1998 .

[308]  W. Köhler Intelligenzprüfungen an Menschenaffen , .

[309]  Y. Miyashita Inferior temporal cortex: where visual perception meets memory. , 1993, Annual review of neuroscience.

[310]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[311]  Eric O. Postma,et al.  SCAN: A Scalable Model of Attentional Selection , 1997, Neural Networks.

[312]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[313]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[314]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[315]  R. Shadmehr,et al.  A Gain-Field Encoding of Limb Position and Velocity in the Internal Model of Arm Dynamics , 2003, PLoS biology.

[316]  G. Humphrey,et al.  Recognizing novel views of three-dimensional objects. , 1992, Canadian journal of psychology.

[317]  William G. Wee,et al.  Graph matching for object recognition and recovery , 2004, Pattern Recognit..

[318]  D. Hubel Single unit activity in striate cortex of unrestrained cats , 1959, The Journal of physiology.

[319]  C. Koch,et al.  The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus , 2004, Experimental Brain Research.

[320]  H H Bülthoff,et al.  How are three-dimensional objects represented in the brain? , 1994, Cerebral cortex.

[321]  S. Zeki,et al.  The third visual complex of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[322]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[323]  M. Pinsky Introduction to Fourier analysis and wavelets , 2002 .

[324]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[325]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[326]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[327]  Shimon Edelman,et al.  Receptive field spaces and class-based generalization from a single view in face recognition , 1995 .

[328]  Graeme Mitchison,et al.  Removing Time Variation with the Anti-Hebbian Differential Synapse , 1991, Neural Computation.

[329]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[330]  Richard N Aslin,et al.  Statistical learning of new visual feature combinations by infants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[331]  Mark H. Johnson,et al.  Object Recognition and Sensitive Periods: A Computational Analysis of Visual Imprinting , 1994, Neural Computation.

[332]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[333]  Wolfgang Konen,et al.  A fast dynamic link matching algorithm for invariant pattern recognition , 1994, Neural Networks.

[334]  M. Konishi,et al.  Emergence of multiplicative auditory responses in the midbrain of the barn owl. , 2007, Journal of neurophysiology.

[335]  Gary D. Bernard,et al.  A proposed mechanism for multiplication of neural signals , 1976, Biological Cybernetics.

[336]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[337]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[338]  Donald D. Hoffman The Interpretation of Visual Illusions , 1983 .

[339]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[340]  G. Edelman,et al.  Spatial signaling in the development and function of neural connections. , 1991, Cerebral cortex.

[341]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[342]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[343]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[344]  G. Geiger Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes , 2004, Kybernetik.

[345]  James V. Stone Learning Perceptually Salient Visual Parameters Using Spatiotemporal Smoothness Constraints , 1996, Neural Computation.

[346]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[347]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[348]  E. Rolls,et al.  Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[349]  M. Tarr Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects , 1995, Psychonomic bulletin & review.

[350]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[351]  Shimon Ullman,et al.  Computation of pattern invariance in brain-like structures , 1999, Neural Networks.

[352]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[353]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[354]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[355]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[356]  T. Poggio,et al.  Multiplying with synapses and neurons , 1992 .

[357]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[358]  E. Rolls Functions of neuronal networks in the hippocampus and neocortex in memory , 1989 .

[359]  A. Hendrickson,et al.  Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex , 1981, Nature.

[360]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[361]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[362]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[363]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[364]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[365]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[366]  P M Gochin Properties of simulated neurons from a model of primate inferior temporal cortex. , 1994, Cerebral cortex.

[367]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[368]  H. J. Reitboeck,et al.  A model for size- and rotation-invariant pattern processing in the visual system , 2004, Biological Cybernetics.

[369]  Thomas J. Carew,et al.  Multiple overlapping processes underlying short-term synaptic enhancement , 1997, Trends in Neurosciences.

[370]  David C. Knill Discrimination of planar surface slant from texture: human and ideal observers compared , 1998, Vision Research.

[371]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[372]  E. Rolls,et al.  Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey , 1985, Vision Research.

[373]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[374]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[375]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[376]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[377]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[378]  J. Moran,et al.  Sensation and perception , 1980 .

[379]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[380]  E T Rolls,et al.  Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[381]  Thomas O. Binford,et al.  Inferring Surfaces from Images , 1981, Artif. Intell..

[382]  Heinrich H. Bülthoff,et al.  Bayesian Models for Seeing Shapes and Depth , 1990 .

[383]  D. Pollen,et al.  Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. , 1975, The Journal of physiology.