Modal-space control for articulated characters

We present a novel control algorithm for simulating an articulated character performing a given reference motion and its variations. The unique feature of our controller is its ability to make a long-horizon plan at every time step. Our algorithm overcomes the computational hurdle by applying modal analysis on a time-varying linear dynamic system. We exploit the properties of modal coordinates in two ways. First, we design separate control strategies for dynamically decoupled modes. Second, our controller only applies long-horizon planning on a subset of modes, largely reducing the size of the control problem. With this decoupled and reduced control system, the character is able to execute the reference motion while reacting to unexpected perturbations and anticipating changes in the environment. We demonstrate our results by simulating a variety of reference motions, such as walking, squatting, jumping, and swinging.

[1]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[2]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[3]  David J. Fleet,et al.  Optimizing walking controllers , 2009, SIGGRAPH 2009.

[4]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[5]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[6]  Marie-Paule Cani,et al.  Modal Locomotion: Animating Virtual Characters with Natural Vibrations , 2009, Comput. Graph. Forum.

[7]  C. Karen Liu,et al.  Animating responsive characters with dynamic constraints in near-unactuated coordinates , 2008, SIGGRAPH 2008.

[8]  Dinesh K. Pai,et al.  Motion perturbation based on simple neuromotor control models , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[9]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[11]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[12]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[13]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[14]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[15]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[16]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[17]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[18]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[19]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[20]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[21]  A. Shabana Vibration of Discrete and Continuous Systems , 1996, Mechanical Engineering Series.

[22]  Petros Faloutsos,et al.  On the beat!: timing and tension for dynamic characters , 2007, SCA '07.

[23]  Jovan Popovic,et al.  Adaptation of performed ballistic motion , 2005, TOGS.

[24]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, SIGGRAPH 2010.

[25]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[26]  Philippe Beaudoin,et al.  Generalized biped walking control , 2010, SIGGRAPH 2010.

[27]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[28]  C. Karen Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[29]  Jessica K. Hodgins,et al.  Constraint-based motion optimization using a statistical dynamic model , 2007, ACM Trans. Graph..

[30]  C. K. Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[31]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[32]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[33]  R. Miall,et al.  Visuomotor tracking with delayed visual feedback , 1985, Neuroscience.

[34]  C. T. Farley,et al.  Leg stiffness primarily depends on ankle stiffness during human hopping. , 1999, Journal of biomechanics.

[35]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[36]  Aaron Hertzmann,et al.  Prioritized optimization for task-space control , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[38]  Chen Shen,et al.  Interactive Deformation Using Modal Analysis with Constraints , 2003, Graphics Interface.

[39]  Michiel van de Panne,et al.  Synthesis of Controllers for Stylized Planar Bipedal Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[40]  Yoonsang Lee,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[41]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .

[42]  Aaron Hertzmann,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, SIGGRAPH 2010.

[43]  Petros Faloutsos,et al.  Dynamic Free-Form Deformations for Animation Synthesis , 1997, IEEE Trans. Vis. Comput. Graph..

[44]  Z. Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Trans. Graph..

[45]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[46]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..

[47]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[48]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[49]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[50]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[51]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[52]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[53]  Jessica K. Hodgins,et al.  Simulating balance recovery responses to trips based on biomechanical principles , 2009, SCA '09.

[54]  J. T. Massey,et al.  Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. , 1981, Journal of neurophysiology.

[55]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[56]  Dinesh K. Pai,et al.  DyRT: dynamic response textures for real time deformation simulation with graphics hardware , 2002, SIGGRAPH.

[57]  Jehee Lee,et al.  Data-driven biped control , 2010, SIGGRAPH 2010.

[58]  C. Karen Liu,et al.  Animating responsive characters with dynamic constraints in near-unactuated coordinates , 2008, ACM Trans. Graph..

[59]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[60]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[61]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[62]  Jovan Popovic,et al.  Interactive animation of dynamic manipulation , 2006, SCA '06.

[63]  Taku Komura,et al.  Stepping motion for a human-like character to maintain balance against large perturbations , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..